Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (3): 233-240    DOI: 10.11901/1005.3093.2016.679
ARTICLES Current Issue | Archive | Adv Search |
Microstructure and Properties for Composites of Graphene Oxide/Cement
Shenghua LV1(), Jia ZHANG1, Xiaoqian LUO1, Linlin ZHU1, Caihui NI2
1 College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
2 Nantong New Building Materials Co. Ltd., Nantong 226299, China;
Cite this article: 

Shenghua LV, Jia ZHANG, Xiaoqian LUO, Linlin ZHU, Caihui NI. Microstructure and Properties for Composites of Graphene Oxide/Cement. Chinese Journal of Materials Research, 2018, 32(3): 233-240.

Download:  HTML  PDF(6701KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Graphene oxide (GO) nanosheets were prepared via oxidation treatment of graphite and then the dispersion liquid of which was prepared by ultrasound vibration in. The thickness and plane size of GO nanosheets are less than 11.95 nm and within 50~900 nm respectively. There are many chemical groups such as hydroxyl, carbonyl and epoxy groups on GO nanosheets. The prepared composite of graphene oxide/cement composited of ordinary cement and 0.03% GO nanosheets presents the regular micromorphology of ordinary cement, which consists of polyhedron-like cement hydration crystals by interweaving, penetrating and embedding each other. The compressive and flexural strength of the composite of GO/cement after curing for 28 days increase by 76.2% and 86.1% respectively, in comparison to that of the ordinary cement without GO addition, correspondingly the porosity and average pore diameter as well as cracks decrease obviously too.

Key words:  inorganic non-metallic materials      graphene oxide      cement matrix      cement hydration products      microstructure     
Received:  29 January 2017     
ZTFLH:  TU528.572  
Fund: Supported by National Natural Science Foundation of China (No. 21276152), Scientific and Technological Coordinate Project of Shaanxi Province (No. 2016KTCL01-14).

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.679     OR     https://www.cjmr.org/EN/Y2018/V32/I3/233

Fig.1  FTIR (a) and XPS spectra (b) of graphite and GO
Fig.2  AFM image and size distribution of GO nanosheets (a) AFM images of GO sheets, (b, c and d) Side view of AFM images of GO nanosheets, (e) Size distribution of GO nanosheets
Fig.3  SEM images of control samples without GO and at 28 d (a) Magnified 500 times; (b) Magnified 5000 times; (c) Magnified 200000 times
Fig.4  SEM images of cement composites doping with 0.03% GO at 28 d (a) Large-area regular microstructure; (b) Flower-like patterns; (C) Flower-like patterns; (d) Flower-like patterns; (e) Interweaving structure of polyhedron-like cluster crystals; (f) Aggregating structure of polyhedron-like crystals
Fig.5  SEM Images of cement composites at 28 d (a) SEM image at 5 kV; (b) SEM image at 20 kV; (c) SEM image at large magnification; (d) SEM image at 5 kV; (e) SEM image at 20 kV; (f) SEM image at large magnification
Component and content/%
C O Ca Al Si Mg Fe S
Control sample* 2.46 35.92 43.27 3.26 10.48 1.49 1.51 1.61
EDS1 7.07 34.91 38.97 3.49 9.06 3.59 1.68 1.21
EDS2 4.32 37.19 38.51 5.34 9.39 3.65 1.12 1.48
EDS3 7.46 31.57 39.28 5.26 9.49 2.49 1.10 1.35
EDS4 3.11 10.49 37.69 3.33 8.65 3.49 2.06 1.29
Table 1  Element composites of cement hydration crystals
Fig.6  XRD patterns of cement hydration products
Total pore area/m2g-1 Median pore diameter/nm Average pore diameter/nm Apparent density/gmL-1 Porosity/%
Control sample 26.3 35.4 43.5 2.31 35.52
GO/cement composites 12.6 15.3 16.2 2.45 11.38
Table 2  Pore structure of hardened cement paste mixed with GONs at 28 d
GO dosage/% Compressive strength/MPa Flexural strength/MPa
3 d 7 d 28 d 60 d 3 d 7 d 28 d 60 d
0 21.8±1.1 30.4±1.4 43.6±1.1 45.3±1.0 2.8±0.14 5.6±0.2 8.2±0.4 9.2±0.5
0.03 32.7±1.3 51.8±1.5 77.5±1.8 79.6±1.9 5.6±0.2 8.5±0.4 15.7±0.6 16.2±0.6
Table 3  Compression and flexural strength of the cement composites
Fig.7  Regulation mechanism of GO on cement hydration products and its microstructure (a) hydration (b) template effect (c) regular flower-like structure
[1] Lv S H, Ma Y J, Qiu C C, et al.Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites[J]. Constr. Build. Mater., 2013, 49: 121
[2] Al-Tulaian B S, Al-Shannag M J, Al-Hozaimy A R. Recycled plastic waste fibers for reinforcing portland cement mortar[J]. Constr. Build. Mater., 2016, 127: 102
[3] Mehran K M, Ali M.Use of glass and nylon fibers in concrete for controlling early age micro cracking in bridge decks[J]. Constr. Build. Mater., 2016, 125: 800
[4] Deyu K D, Corr D J, Hou P, et al.Influence of colloidal silica sol on fresh properties of cement paste as compared to nano-silica powder with agglomerates in micron-scale[J]. Cem. Concr. Compos., 2015, 63: 30
[5] Ghatefar A, El-Salakawy E, Bassuoni M T.Early-age restrained shrinkage cracking of GFRP-RC bridge deck slabs: Effect of environmental conditions[J]. Cem. Concr. Compos., 2015, 64: 62
[6] Lameiras R, Barros J A O, Azenha M. Influence of casting condition on the anisotropy of the fracture properties of steel fibre reinforced self-compacting concrete (SFRSCC)[J]. Cem. Concr. Compos., 2015, 59: 60
[7] Wang J Basheer P A M, Nanukuttan S V. Influence of service loading and the resulting micro-cracks on chloride resistance of concrete[J]. Constr. Build. Mater., 2016, 108: 56
[8] Shen D J, Jiang J L, Shen J X.Influence of curing temperature on autogenous shrinkage and cracking resistance of high-performance concrete at an early age[J]. Constr. Build. Mater., 2016, 103: 67
[9] Di B C, Wyrzykowski M, Griffa M.Application of microstructurally-designed mortars for studying early-age properties: Microstructure and mechanical properties[J]. Cem. Concr. Res., 2015, 78: 234
[10] Scrivener K L, Juilland P, Monteiro P J.Advances in understanding hydration of Portland cement[J]. Cem. Concr. Res., 2015, 78: 38
[11] Sun H F, Li Z S S, Memon S A, et al. Influence of ultrafine 2CaOSiO2 powder on hydration properties of reactive powder concrete[J]. Materials, 2015, 8: 6195
[12] Quercia G, Lazaro A, Geus J W, et al.Characterization of morphology and texture of several amorphous nano-silica particles used in concrete[J]. Cem. Concr. Compos., 2013, 44: 77
[13] Huang Z Q, Zhang E Q, Lv X C.Research on the mechanical properties of the polymer cement concrete[J]. Concrete, 2016, (7): 95(黄志强, 张二芹, 吕晨曦. 聚合物改性混凝土力学性能试验研究[J]. 混凝土, 2016, (7): 95)
[14] Müller U, Miccoli L, Fontana P.Development of a lime based grout for cracks repair in earthen constructions[J]. Constr. Build. Mater., 2016, 110: 323
[15] Gil G A, Sandra M A, Cruz A, et al.Graphene oxide versus functionalized carbon nanotubes as a reinforcing agent in a PMMA/HA bone cement[J]. Nanoscale, 2012, 4: 2937
[16] Mujtaba A, Keller M, Ilisch S, et al.Detection of surface-immobilized components and their role in viscoelastic reinforcement of rubber-silica nanocomposites[J]. ACS Macro Lett., 2014, 3: 481
[17] Zhao Y H, Ma Z K, Song H H.Synthesis and characterization of carbon fibers multi-scale reinforcement with grafted graphene oxide[J]. Chinese J. Mater.Res., 2016, 30(3): 229(赵永华, 马兆昆, 宋怀河. 碳纤维/氧化石墨烯多尺度增强体的制备与表征[J]. 材料研究学报, 2016, 30(3): 229)
[18] Lin H L, Shen Y J, Wang Z J, et al.Preparation and performance of polypropylene nano-composites toughened-reinforced synergetically with functionalized graphene and elastomer[J]. Chinese J.Mate. Res., 2016, 30(5): 393(蔺海兰, 申亚军, 王正君等. 功能化石墨烯/弹性体协同强韧化聚丙烯纳米复合材料的制备和性能研究[J], 材料研究学报, 2016, 30(5): 393)
[19] Lv S H, Liu J J, Sun T, et al.Effect of GO nanosheets on shapes of cement hydration crystals and their formation process[J]. Constr. Build. Mater., 2014, 64: 231
[20] Lv S H, Deng L J, Yang W Q.Fabrication of polycarboxylate/graphene oxide nanosheet composites using copolymerization, for reinforcing and toughening cement composites[J]. Cem.Concr.Compos., 2016, 66: 1
[21] Lv S H, Sun T, Liu J J, et al.Use of graphene oxide nanosheets to regulate the microstructure of hardened cement paste to increase its strength and toughness[J]. CrystEngComm, 2014, 16(36): 8508
[22] Zhu Y W, Murali S, Cai W W, et al.Graphene and graphene oxide: synthesis, properties and applications[J]. Adv. Mater., 2010, 22(35): 3906
[23] Chen Y M, Xu Z Z.Science base of preparation and application of high performance cement[M]. Beijing:Chemistry Industry press, 2008(陈益民, 许仲梓. 高性能水泥制备和应用的科学基础[M]. 北京: 化学工业出版社, 2008)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[10] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[11] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[12] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[13] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[14] XIA Bo, WANG Bin, ZHANG Peng, LI Xiaowu, ZHANG Zhefeng. Effect of Tempering Temperature on Microstructure and Impact Properties of Two High-strength Leaf Spring Steels[J]. 材料研究学报, 2023, 37(5): 341-352.
[15] ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei, XU Pian. Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy[J]. 材料研究学报, 2023, 37(5): 362-370.
No Suggested Reading articles found!