Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (2): 152-160    DOI: 10.11901/1005.3093.2016.384
Orginal Article Current Issue | Archive | Adv Search |
Effect of Flash Allowance on Microstructure and Properties of Flash Butt Welded Joint for 510 MPa Wheel Steel
Hongbo ZHANG1,Fengliang TAN2,3,Zhiguo CHEN1,2()
1 School of Materials Science and Engineering, Central South University, Changsha 410083, China
2 Department of Mechanical and Electrical Engineering, Hunan University of Humanities, Science and Technology, Loudi 417000, China
3 Postdoctoral workstation of VALIN LY Steel Co.Ltd, Loudi 417000, China
Cite this article: 

Hongbo ZHANG,Fengliang TAN,Zhiguo CHEN. Effect of Flash Allowance on Microstructure and Properties of Flash Butt Welded Joint for 510 MPa Wheel Steel. Chinese Journal of Materials Research, 2017, 31(2): 152-160.

Download:  HTML  PDF(12653KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of different flash allowances on the microstructure and mechanical properties of flash butt welded joint for 510CL wheel steel was investigated. The results indicate that the heat affected zone consists of interfacial zone, coarse grain zone, annealed zone and incomplete annealed zone. The Vickers hardness of interface area is the highest, and the peak hardness range is 201 ~ 219 HV. When flash allowance is lower, interface area mainly consists of blocky ferrite and granular bainite. When flash allowance is moderate, the interface area consists of acicular ferrite with excellent mechanical performance. Excessive flash allowance generates too much heat, and the interface area will mainly consist of widmanstatten structure and granular bainite with poor mechanical properties. The welded joint fracture may be ascribed to the existence of too much widmentstatten structure with high density of mismatch. In order to obtain flash butt joint with good performance, the reasonable range design of flash allowance is 3.5 ~ 5.5 mm.

Key words:  metallic materials      flash allowance      flash butt welding      microstructure      mechanical properties     
Received:  06 July 2016     
Fund: Supported by Natural Science Foundation of Hunan Province (No.2016JJ6045)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.384     OR     https://www.cjmr.org/EN/Y2017/V31/I2/152

C Si Mn P S Al Al_s Ni Cr Cu Ti Nb N
≤0.08 ≤0.2 ≤2.5 ≤0.02 ≤0.005 ≤0.05 ≤0.05 ≤0.02 ≤0.02 ≤0.04 ≤0.03 ≤0.03 ≤0.004
Table 1  The chemical composition of metal sheet (mass fraction,%)
Sample
No.
Flash allowance
(mm)
Flash speed
(mm/s)
Upset speed
(mm/s)
Upset allowance (mm)
1# 2.5 5 70 5.5
2# 3.5 5 70 5.5
3# 4.5 5 70 5.5
4# 5.5 5 70 5.5
5# 6.5 5 70 5.5
Table 2  The welding parameters
Fig.1  The flash butt welding principle diagram
Fig.2  Microstructure of 510CL steel plate(F-ferrite,P-pearlite)
Fig.3  Microstructure of heat affect zone for 1# joint: (a) interfacial zone;(b) coarse grain zone; (c) annealed zone; (d) incomplete annealed zone(GB- granular bainite,PF- polygonal ferrite,AF- acicular ferrite,W-widmanstatten)
Fig.4  Microstructures of interfacial zone and coarse grain zone under the different flash allowances: (a) (b) 2.5 mm; (c) (d) 3.5 mm; (e) (f) 4.5 mm; (g) (h) 5.5 mm; (i) (j) 6.5 mm
Fig.5  Microstructures of welded joints under the different flash allowances
Fig.6  The effect of different flash allowances on HAZ width in welded joints
Sample No. Tensile test Cold bend inspection
(D=5a,180°)
Impact test
(room temperature)
fracture position positive bend back bend Impact AKv / J
1# base metal qualified qualified 36.58
2# base metal qualified qualified 38.25
3# base metal qualified qualified 40.50
4# base metal qualified qualified 38.57
5# weld line unqualified unqualified 13.67
Table 3  The mechanical property of welded joints
Fig.7  The hardness distribution on both sides of the weld line
Fig.8  Microstructure of weld line and fracture morphology for 5#. (a, b) microstructure of weld seam; (c) tensile fracture surface; (d) impact fracture surface; (e) cold bending fracture surface)
[1] Wang L, Yang X X, Lu J X.Development of high strength steel sheets for lightweight automobile[J]. Iron and Steel, 2006, 41(9): 1
[1] (王利,杨雄心,陆匠心. 汽车轻量化用高强度钢板的发展[J]. 钢铁,2006, 41(9): 1)
[2] Jiang H T, Tang D, Mi Z L.Latest progress in development and application of advanced high strength steels for automobiles[J]. Journal of Iron and Steel Research, 2007, 19(8): 1
[2] (江海涛, 唐荻, 米振莉. 汽车用先进高强度钢的开发及应用进展[J]. 钢铁研究学报, 2007, 19(8): 1)
[3] Liao D H, Cheng A G, Zhong Z H.Study on optimization for automobile safety and lightweight based on variable complexity approximate model[J]. China Mechanical Engineering, 2013, 24(15): 2118
[4] Li H, Li X.The present situation and the development trend of new materials used in automobile lightweight[J]. Applied Mechanics and Materials, 2012, 189(1): 58
[5] Neves J, Loureiro A. Fracture toughness of welds-effect of brittle zones and strength mismatch [J]. J. Mater. Process. Technol, 2004, 153-154(32): 537
[6] Feng Q Y, Li T J, Ding Z M, et al.Research situation and development trends of flash butt welding[J]. Mater. Sci. Technol, 2008, 16(1): 49
[6] (冯秋元, 李廷举, 丁志敏等. 闪光对焊技术研究现状及发展趋势[J]. 材料科学与工艺, 2008, 16(1): 49)
7 7 Huang D N, Zuo Z Z, Li Y L. Microstructure,properties and failure mechanism of flash-butt-welded Joint in 380 MPa Wheel Steel[J]. Hot Working Technology, 2015, 44(3): 183-186
8 (黄东南, 左壮壮, 李有来. 380 MPa级车轮钢闪光对焊接头组织性能与失效机制[J]. 热加工工艺, 2015, 44(3): 183)
[8] Ziemian C W, Sharma M M, Whaley D E.Effects of flashing and upset sequences on microstructure, hardness,and tensile properties of welded structural steel joints[J]. Mater. Des, 2012, 33(1): 175
[9] Benavides S, Li Y, Murr L E, Brown D, et al.Low-temperature friction-stir welding of 2024 aluminum[J]. Scripta. Mater, 1999, 41(8): 809
[10] Sun Q Z.Study on microstructures and mechanical properties of flash butt welded joints for high strength steels [D]. Changchun:Jilin University, 2014
[10] (孙权智. 高强钢闪光对焊接头的组织及力学性能研究 [D]. 长春: 吉林大学, 2014)
[11] Wang W B, Shi Y W, Li Y P, et al.FEM simulation on microstructure of DC flash butt welding for an ultra-fine grain steel[J]. J. Mater. Process. Technol, 2005, 161(3): 497-503
[12] Li Y J.Welding microstructure and quality control[M]. Beijing: Chemical process press, 2005
[12] (李亚江. 焊接组织性能与质量控制 [M]. 北京: 化学工艺出版社, 2005)
[13] ?etinkaya C, Arabaci U.Flash butt welding application on 16MnCr5 steel and investions of mechanical properties[J]. Mater. Des, 2006, 27(10): 1187
[14] Xiong Z H, Liu S L, Wang X M, et al.The contribution of intragranular acicular ferrite microstructural constituent on impact toughness and impeding crack initiation and propagation in the heat-affected zone (HAZ) of low-carbon steels[J]. Mater. Sci. Eng. A, 2015, 636(1): 117
[15] Wu D, Zhan X M, Song Y M.Deformation and structure of flash welded joint of 20MnSi steel for endless rolling[J]. Iron and Steel, 2002, 37(2): 43-46
[15] (吴迪, 赵宪明, 宋玉明. 20MnSi钢闪光对焊无头轧制焊缝的变形及金相组织[J]. 钢铁, 2002, 37(2): 43)
[16] Zhu L, Chen J H.Strength and deformation in HAZ softened welded joints[J]. Transactions of the china welding institution, 2004, 25(2): 61
[16] (朱亮, 陈剑虹. 热影响区软化焊接接头的强度及变形[J]. 焊接学报, 2004, 25(2): 61)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!