Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (12): 921-930    DOI: 10.11901/1005.3093.2016.176
Orginal Article Current Issue | Archive | Adv Search |
Phase Transformation Kinetics of Phase Change Materials of Expanded Graphite/Stearic Acid Composite
Yuntao LI,Hua YAN(),Hongtao WANG,Qun WANG
Department of Chemistry and Material Engineering, Logistic Engineering University, Chongqing 401311, China
Cite this article: 

Yuntao LI,Hua YAN,Hongtao WANG,Qun WANG. Phase Transformation Kinetics of Phase Change Materials of Expanded Graphite/Stearic Acid Composite. Chinese Journal of Materials Research, 2016, 30(12): 921-930.

Download:  HTML  PDF(3548KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Phase change materials of expanded graphite/stearic acid composite (SA/EG-PCMs) were prepared by melt-blending method with stearic acid (SA) as phase change material and expanded graphite (EG) as packing material. The structure and property of SA/EG-PCMs were characterized by SEM, FT-IR, TG and the DSC of multi rate, and their phase transformation kinetics was studied by the model of data processing of non-isothermal kinetics. The results show that there exist a lot of holes with network structures within EG, which were composed of parallel and collapsed laminas of stacked thinner graphite of 10~50 μm, with which SA was packaged thereby, the resulted particle size of SA/EG-PCMs was decreased. According to the analysis of the phase transformation kinetics, EG might play certain role in hindering the thermal migration of the molecular chains of DA; the activation energy of SA/EG-PCMs was higher than that of the pure SA (E is 535.55 kJ/mol), indicating the higher thermal stability of the former; With the increasing EG content, the activation energy of SA/EG-PCMs increased gradually, as the EG content over 10%, the blocking effect of SA/EG-PCMs on the migration of molecular chain of SA increased much more obviously, and which enable the dissension of the phase transition temperature and phase change enthalpy to be enlarged.

Key words:  composite      composite phase change materials      expanded graphite      stearic acid      phase transformation      kinetics     
Received:  05 April 2016     
Fund: *Supported by National Natural Science Foundation of China No. 51272283.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.176     OR     https://www.cjmr.org/EN/Y2016/V30/I12/921

Fig.1  Preparation process diagram of SA/EG-PCMs
Fig.2  The DSC curve of the phase change process (A) and DSC curve of peak index (B)
Fig.3  SEM images of EG (a), S1 (b), S2 (c), S3 (d), S4 (e), S5 (f)
Fig.4  FT-IR spectra of SA and SA/EG-PCMs
EG(%, mass fraction) β(K/min) T0(K) Tp(K) Tf(K) Tr(K) H(J/g)
0 3 298.6 338.2 341.4 333.4 181.4
5 297.6 339.1 342.7 332.5 184.1
8 297.3 340.3 345.4 333.5 186.6
10 296.9 341.7 347.1 333.7 182.5
5 3 298.3 337.3 338.9 331.7 171.5
5 298.1 338.1 342.0 331.6 170.1
8 297.6 339.1 345.0 332.1 168.4
10 297.9 339.6 345.6 332.4 170.6
10 3 299.1 336.0 336.5 331.1 157.6
5 298.6 336.7 338.2 330.5 159.9
8 298.4 337.6 341.2 331.2 160.1
10 298.7 338.4 342.6 331.7 161.6
15 3 299.6 335.8 336.2 330.5 148.4
5 297.3 336.4 338.1 330.7 147.1
8 297.9 337.1 340 330.9 146.3
10 298.1 337.6 341.2 331.2 147.5
20 3 299.7 335.4 335.6 329.4 135.4
5 299.3 335.9 337.4 330.7 135.2
8 298.2 336.6 339.3 331.2 134.9
10 298.6 337.1 340.1 331.4 135.4
Tabel 1  T0, TP, Tf, H of SA/EG-PCMs with different mass fraction of EG in different heating rate β
Fig.5  DSC curves of SA and SA/EG-PCMs in different heating rates (a) 0%, (b) 5%, (c) 10%, (d) 15%, (e) 20%, (f) the variation of Tr, TP, Tf, H
EG/%, mass fraction 0 5 10 15 20
E(kJ/mol) 535.55 599.81 685.59 793.92 951.36
R2 0.99514 0.96503 0.98253 0.99412 0.99154
Table 2  Values of E and R2 of SA/EG-PCMs with different mass fraction of EG
Fig.6  Plot ln(β/TP2) versus 1/Tp (a) and activation energy (b)
Influence factor Micropore binding Surface adsorption
SA/EG-PCMs Micropore binding Specific surface area Surface polarity Hydrogen bond
Table 3  Interactions between SA and EG
Fig.7  Schematic of the interaction of SA with EG
Heating rate/℃min-1 Reaction order (n)
S1 S2 S3 S4 S5
3 0.90 0.90 0.92 0.93 0.95
5 0.92 0.93 0.96 0.96 0.98
8 0.96 0.97 0.99 0.99 1.03
10 1.03 1.07 1.06 1.10 1.14
Table 4  Reaction order of SA/EG-PCMs in the solid-liquid change under different heating rates
Fig.8  Thermal analysis of SA/EG-PCMs, (a) TGA curve, (b) DTG curve, (c) DSC curve
Fig.9  FT-IR spectra of SA/EG-PCMs in hot and cold cycles, (a) S2, (b) S3, (c) S4, (d) S5
Fig.10  Molecular layer of stearic acid insolid
1 Chcralathan M, Vclraj R Rcnganarayanan S, Heat transfer and parametric studies of an encapsulated phase change material based cool thermal energy storage system, J. Zhejiang Univ. Sci. A, 7(11), 1888(2006)
2 Ho C J, Gao J Y, Preparation and thermophysical properties of nanoparticlein-paraffin emulsion as phase change material, Int. Commun. Heat. Mess Trans., 36(5), 468(2009)
3 Ince S, Seki Y, Ezan M A, Thermal properties of myristic acid/graphite nanoplates composite phase change materials, Rnenwable Energy, 75, 245(2015)
4 He Hongtao, Yue Qinyan, Gao Baoyu, The effects of compounding conditions on the properties of fatty acids eutectic mixtures as phase change materials, Energy Conversion Management, 69, 117(2013)
5 Wang Lijiu, Meng Duo, Fatty acid eutectic/polymethyl methacrylate composite as form-stable phase change material for thermal energy storage, Appl. Energy, 87(8), 2662(2010)
6 TIAN Yunfeng, LI Zhen, WANG Yang, ZENG Ping, JIANG Lingyi, Preparation and performance of a phase change heat storage composite of paraffin/different particle sized expanded graphite, Chinese Journal of Materials Research, 29(4), 265(2015)
6 (田云峰, 李珍, 王洋, 曾萍, 姜凌艺, 石墨/不同粒径膨胀石墨复合相变蓄热材料的制备和性能, 材料研究学报, 29(4), 265(2015))
7 XIAO Xin, ZHANG Peng, Thermal characterization of graphite foam/paraffin composite phase change material, Journal of Engineering Thermophysics, 34(3), 532(2013)
7 (肖鑫, 张鹏, 泡沫石墨/石蜡复合相变材料热物性研究, 工程热物理学报, 34(3), 532(2013))
8 WANG Fang, ZHANG Gongzheng, Nonisothermal kinetics of solid-solid phase transitions in polyethylene glycol/polyacrylamide phase change materials, Polymer Materials Science and Engineering, 23(6), 118(2007)
8 (王芳, 张公正, 聚乙二醇/聚丙烯酰胺相变材料非等温固-固相变动力学, 高分子材料科学与工程, 23(6), 118(2007))
9 ZHANG Lei, Study on preparation, properties and phase change heat transfer process of polyethylene glycol-based composite thermal energy storage materials, PhD disseration (Wuhan, Wuhan University of Technology, 2012)
9 (张磊, 聚乙二醇基复合储热材料的制备、性能及其相变传热过程研究, 博士学位论文(武汉, 武汉理工大学, 2012))
10 ZHANG Ni, The preparation and dynamics research of composite phase change thermal storage materials and its application in building materials, Master thesis (Guangzhou, South China University of Technology, 2012)
10 (张妮, 复合相变蓄热材料的制备、相变动力学研究及在建筑材料中的应用, 硕士学位论文(广州, 华南理工大学, 2012))
11 HUANG Xue, CUI Yingde, YIN Guoqiang, ZHANG Buning, Preparation and phase transformation kinetic of organic modified montmorillonite based composite phase change material, Materials Review, 29(8), 64(2015)
11 (黄雪, 崔英德, 尹国强, 张步宁, 有机改性蒙脱土基复合相变材料的制备及相变动力学分析, 材料导报, 29(8), 64(2015))
12 Kissinger H E, Reaction kinetics in differential thermal analysis, Analytical Chemistry, 29(11), 1704(1957)
13 ZHANG Zhengguo, LONG Na, FANG Xiaoming, Study on performance of paraffin/expanded graphite composite phase-change material, Journal of Function Materials, 8(40), 1314(2009)
13 (张正国, 龙娜, 方晓明, 石蜡/膨胀石墨复合相变储热材料的性能研究, 功能材料, 8(40), 1314(2009))
14 YANG Hua, MAO Jian, FENG Jie, Investigation on preparation and performance of paraffin/silicon dioxide composite phase change materials, Materials Review, 24(15), 279(2010)
14 (杨化, 毛健, 冯杰, 石蜡/SiO2复合相变材料的制备及性能测试, 材料导报, 24(15), 279(2010))
15 A. Sari, A. Karaipekli, Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material, Appl. Therm. Eng., 27(8), 1274(2007)
16 Feng L L, Zheng J, Yang H Z, Preparation and characterization of polyethylene glycol/active carbon composites as shape-stabilized phase change materials, Solar Energy Materials and Solar Cells, 95, 646(2011)
17 ZHANG Qing, WANG Hongli, MI Xin, Preparation and characterization of lauric-myristic-capric acid/expanded graphite form-shaped composite phase change material, New Chemical Materials, 43(4), 47(2015)
17 (张庆, 王宏丽, 米欣, 月桂酸-肉豆蔻酸-癸酸/膨胀石墨定形相变材料的制备与性能研究, 化工新型材料, 43(4), 47(2015))
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
[6] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[9] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[10] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[11] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[12] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[13] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[14] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[15] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
No Suggested Reading articles found!