Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (11): 819-824    DOI: 10.11901/1005.3093.2015.624
Orginal Article Current Issue | Archive | Adv Search |
Effect of Aging Process on Strength and Toughness of AerMet100 Steel
Xin WANG,Hongbo DONG(),Daqing YUAN,Zongbo ZOU,Mingzhu WANG
Nanchang Hangkong University, Nanchang 330063, China
Cite this article: 

Xin WANG, Hongbo DONG, Daqing YUAN, Zongbo ZOU, Mingzhu WANG. Effect of Aging Process on Strength and Toughness of AerMet100 Steel. Chinese Journal of Materials Research, 2016, 30(11): 819-824.

Download:  HTML  PDF(4499KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of aging processes on the tempered microstructure and mechanical properties of the forged AerMet100 steel was investigated, while the named processes include normal aging, pre-aging + normal aging and double aging etc. The results show that high tensile strength (1978 MPa) with low impact toughness (AK=74 J) can be obtained by the normal aging process; higher impact toughness (impact energy 102 J) can be obtained by double aging process, but tensile strength is lower (1662 MPa); however, excellent strength and toughness (σb=1946 MPa; AK=104 J) can be obtained by pre aging + normal aging (510℃×30 min, OQ+482℃×5 h, AC) process. The improvment of strength and toughness can be attribute to that the 510℃ pre aging could promote the C atom diffusion, therewith increased the amount and the stability of the flim-like reversed austenite; besides enable the M2C precipitate to maintain a good lattice relationship with the matrix induced by the short time (≤30 min) pre aging, therefore the precipitation strengthening effect was enhanced.

Key words:  metallic materials      secondary hardening steel      pre aging      mechanical property      reversed austenite      precipitation strengthening     
Received:  03 December 2015     
Fund: *Supported by the National Natural Science Foundation of China No. 51164029, Aeronautical Science Foundation of China No.2015ZE56011, Science Project of Jiangxi Province No.20151BBE50042.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.624     OR     https://www.cjmr.org/EN/Y2016/V30/I11/819

C Ni Cr Mo Co Ti Al Mn S P O N Si Fe
0.23 11.73 3.13 1.25 13.85 0.01 0.01 <0.01 0.001 0.006 0.001 0.001 0.0002 Bal.
Table 1  Composition of AerMet100 steel (mass fraction, %)
Aging techniques Cryogenic and aging process
No.1 Normal aging -73℃×1 h, AC+482℃×5 h, AC
No.2 Pre aging + Normal aging 510℃×10 min, OQ+ -73℃×1 h, AC+482℃×5 h, AC
No.3 510℃×30 min, OQ+ -73℃×1 h, AC+482℃×5 h, AC
No.4 -73℃×1 h, AC+510℃×10 min, OQ+482℃×5 h, AC
No.5 -73℃×1 h, AC+510℃×30 min, OQ+482℃×5 h, AC
No.6 Double aging -73℃×1 h, AC+510℃×5 h, OQ+300℃×5 h, AC
Table 2  Heat treatment scheme of AerMet100 steel (OQ, oil quenching; AC, air cooling)
σb/MPa σ0.2/MPa δ / % φ/ % Ak/J
No.1 1978 1810 13.4 65 74
No.2 1975 1910 12.4 65 84
No.3 1922 1856 11.7 67 90
No.4 1941 1872 12.3 65 77
No.5 1946 1885 11.9 66 104
No.6 1662 1550 10.7 70 102
Table 3  Mechanical properties of AerMet100 steel after different aging process
Fig.1  Impact fracture of Aermet100 steel treated with different aging techniques (a)(d) Normal aging No.1; (b)(e) Pre aging No.5; (c)(f) Double aging No.6; (g) Pre aging No.2; (h) Pre aging No.3
Fig.2  XRD pattern of Aermet100 steel with different aging techniques
Fig.3  The equilibrium phases of AerMet100 steel isothermal at 200~600℃ calculated by thermodynamic software (a) volume fraction of phase vs temperature, (b) element of Austenite vs temperature
Fig.4  Bright-field image of reverted austenite after aging process (a) Normal aging No.1 (b) Pre aging+ Normal aging No.5
Fig.5  Bright-field image of precipitate M2C after Pre aging + Normal aging
1 WAN Ru, Aermet100 ultrahigh-strength steel with the unique combination of properties, Journal of Beijing University of Aeronautics and Astronautics, 22(6), 639(1996)
1 (万如, AerMet100—极好综合性能的超高强度钢, 北京航空航天大学学报, 22(6), 639(1996))
2 Koji Sato, Improving the toughness of ultrahigh strength steel, PhD Thesis, (USA, Berkeley, University of California, 2002)
3 R Ayer, P M Machmeier, Transmission of electron microscopy examination of hardening and toughening phenomena in Aermet100, Metallurgical Transactions A, 24, 1943(1993)
4 R Ayer, P. M. Machmeier, On the characteristics of M2C carbides in the peak hardening regime of aerMet 100 steel, Metallurgical Transactions A, 29A(3), 903(1998)
5 PENG Wenwen, ZENG Weidong, YAN Wenqiao, KANG Chao, WANG Tengfei, Effect of tempering process on microstructure and toughness of AerMet100 ultrahigh strength steel, Transactions of Materials and Heat Treatment, 34(6), 58(2013)
5 (彭雯雯, 曾卫东, 闫文巧, 康超, 王腾飞, 回火工艺对Aermet100 超高强度钢组织与韧性的影响, 材料热处理学报, 34(6), 58(2013))
6 LI Jie, GU Lixin, LI Zhi, WANG Junli, GUO Feng, Tempering temperature sensitivity of mechanical properties for AerMet100 steel, Heat Treatment of Metals, 35(3), 33(2010)
6 (李杰, 古立新, 李志, 王俊丽, 郭峰, AerMet100钢力学性能的回火温度敏感性研究, 金属热处理, 35(3), 33(2010))
7 Wang L D, Jiang L Z, Zhu M, Combining strength and toughness in ultrahigh strength steel, Journal of Physics D: Applied Physics, 37, 2151(2004)
8 LIANG Jinkui, WANG Liuding, LI Zhi, WANG Baimin, DING Fucai, Refinement of effective grain and enhancement of reverted austenite stability for AerMet100 steel, Transactions of Materials and Heat Treatment, 31(5), 57(2010)
8 (梁锦奎, 王六定, 李志, 王佰民, 丁富才, AerMet100有效晶粒细化与逆转变奥氏体稳定性的提高, 材料热处理学报, 31(5), 57(2010))
9 Z. F. Hu, X. F. Wu, High resolution electron microscopy of precipitates in high Co-Ni alloy steel, Micron, 34, 19(2003)
10 GAO Kuan, WANG Liuding, ZHU Ming, Improving the grain refinement and toughness of low alloy ultra high strength bainitic steel, Acta Metallurgica Sinica, 43, 315(2007)
10 (高宽, 王六定, 朱明, 低合金超高强度贝氏体钢的晶粒细化与韧性提高, 金属学报, 43, 315(2007))
11 XU Zhuyao, Martensitic transformation and martensite (Beijing Science Press, 1999)
11 (徐祖耀, 马氏体相变与马氏体(北京, 科学出版社, 1999))
12 LING Bin, ZHONG Ping, ZHONG Bingwen, ZHAO Zhenye, On the strengthening mechanism of high Co-Ni Ultrahigh strength steel, Acta Aeronautica Et Astronautica Sinica, 18(1), 44(1997)
12 (凌斌, 钟平, 钟炳文, 赵振业, 新型二次硬化高Co-N i超高强度钢强韧化机制的研究, 航空学报, 18(1), 44(1997))
13 CHEN Ding, CHEN Jihua, YAN Hongge, HUANG Peiyun, Mechanism & industrial applications of cryogenic treatment, Ordnance Material Science and Engineering, 26(3), 68(2003)
13 (陈鼎, 陈吉华, 严红革, 黄培云, 深冷处理原理及其在工业上的应用, 兵器材料科学与工程, 26(3), 68(2003))
14 ZHAO Zhenye, Studing status on the secondary hardening phenomenon in ultra-high strength steels , Journal of Aeronautical Materials, 22(4), 46(2002))
14 (赵振业, 超高强度钢中二次硬化现象研究, 航空材料学报, 22(4), 46(2002))
15 LI Jie, LI Chunzhi, GUO Feng, LI Zhi, YAN Ningao, HRTEM study of strengthening precipitates of secondary hardening ultra-high strength steel, Journal of Aeronautical Materials, 28(4), 1(2008)
15 (李杰, 李志春, 郭峰, 李志, 颜宁皋, 二次硬化超高强度钢中析出强化相HRTEM研究, 航空材料学报, 28(4), 1(2008))
16 LI Jie, SUN Feng, LI Chunzhi, GUO Feng, LI Zhi, YAN Ningao, Analysis of strengthening precipitates of high Co-Ni ultra-high strength steel,Journal of Material engineering, (7), 1(2009)
16 (李杰, 孙枫, 李春志, 郭峰, 李志, 颜宁皋, 高Co-Ni 超高强度钢强化析出相的微观分析, 材料工程, (7), 1(2009))
17 HU Zhengfei, WU Xingfang, WANG Chunxu, Coarsening kinetics of multi-component M2C precipitates in secondary hardening alloy steels, Acta Metallurgica Sinica, 39(6), 585(2003)
17 (胡正飞, 吴杏芳, 王春旭, 二次硬化合金钢中多组元强化相屿碳化物的粗化动力学研究, 金属学报, 39(6), 585(2003))
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!