|
|
Enhancing Effect of LPSO Phases on Hydrogen ab- and de-Sorption Kinetics of Mg94Cu4Y2 Alloy |
LIU Jiangwen, ZOU Changcheng, WANG Hui**( ), OUYANG Liuzhang, ZENG Meiqin, ZHU Min |
Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China |
|
Cite this article:
LIU Jiangwen, ZOU Changcheng, WANG Hui, OUYANG Liuzhang, ZENG Meiqin, ZHU Min. Enhancing Effect of LPSO Phases on Hydrogen ab- and de-Sorption Kinetics of Mg94Cu4Y2 Alloy. Chinese Journal of Materials Research, 2016, 30(4): 248-254.
|
Abstract An alloy Mg94Cu4Y2 with a large quantity of long-period stacking ordered (LPSO) phases bearing Cu and Y was designed and prepared in this paper. The microstructural transformations and the hydrogen absorption/desorption properties of the alloy were characterized during hydrogenation and dehydrogenation processes. The cast Mg94Cu4Y2 alloy consists of phases such as Mg, Mg2Cu and LPSOs with 18R or 14H type. The LPSOs decomposed at the first hydrogenation, and in situ formed highly even dispersed nanocomposite (MgH2+MgCu2+YH3). The Mg/MgH2 was the main reaction during the subsequent dehydrogenation cycles. The alloy exhibits excellent hydrogen absorption and desorption kinetics because the nano-sized and even dispersed Mg2Cu and YH2 catalyzed effectively the Mg/MgH2 reactions.
|
Received: 08 April 2015
|
|
Fund: Supported by National Natural Science Foundation of China Nos. 51431001, 51271078 & U120124, Guangdong Natural Science Foundation Nos. 10151064101000013, 2014A030313222 & 2014A030311004, GDUPS (2014), and International Science & Technology Cooperation Program of China No. 2015DFA51750. |
About author: To whom correspondence should be addressed, Tel: (020)87112830, E-mail: mehwang@scut.edu.cn |
1 |
M. Zhu, Y. Lu, L. Z. Ouyang, H. Wang, Thermodynamic tuning of Mg-based hydrogen storage alloys: Areview, Materials, 6(10), 4654(2013)
doi: 10.3390/ma6104654
|
2 |
B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, Metal hydride materials for solid hydrogen storage: a review, International Journal of Hydrogen Energy, 32(9), 1121(2007)
doi: 10.1016/j.ijhydene.2006.11.022
|
3 |
P. Chen, M. Zhu, Recent progress in hydrogen storage, Materials Today, 11(12), 36(2008)
doi: 10.1016/S1369-7021(08)70251-7
|
4 |
J. J. Reilly, R. H. Wiswall, Reaction of hydrogen with alloys of magnesium and copper, Inorganic Chemistry, 6(12), 2220(1967)
doi: 10.1021/ic50058a020
|
5 |
T. Von Waldkirch, A. Seiler, P. Zürcher, H. J. Mathieu, Mg-based hydrogen storage materials: Surface segregation in Mg2Cu and related catalytic effects, Materials Research Bulletin, 15(3), 353(1980)
|
6 |
N.Takeichi, K. Tanaka, H. Tanaka, T. Ueda, Y. Kamiya, M. Tsukahara, H. Miyamura, S. Kikuchi, Hydrogen storage properties of Mg/Cu and Mg/Pd laminate composites and metallographic structure, Journal of Alloys and Compounds,, 446-447(0), 543(2007)
doi: 10.1557/PROC-1128-U01-04
|
7 |
J. P. Lei, H.Huang, X. L.Dong, J. P. Sun, B. Lu, M. K. Lei, Q. Wang, C. Dong, G. Z. Cao, Formation and hydrogen storage properties of in situ prepared Mg-Cu alloy nanoparticles by arc discharge, International Journal of Hydrogen Energy, 34(19), 8127(2009)
doi: 10.1016/j.ijhydene.2009.07.092
|
8 |
A. Karty, X. Grunzweig, J. Genossar, P. S. Rudman, Hydriding and dehydriding kinetics of Mg in a Mg/Mg2Cu eutectic alloy: Pressure sweep method, Journal of Applied Physics, 50(11), 7200(1979)
|
9 |
Y. H. Zhang, B. W. Li, H. P. Ren, S. H. Guo, D. L. Zhao, X. L. Wang, Hydrogenation and dehydrogenation behaviours of nanocrystalline Mg20Ni10-xCux (x=0-4) alloys prepared by melt spinning, International Journal of Hydrogen Energy, 35(5), 2040(2010)
doi: 10.1016/j.ijhydene.2009.12.029
|
10 |
M. Y. Song, S. N. Kwon, J. Bae, S. Hong, Hydrogen-storage properties of Mg-23.5Ni- (0 and 5) Cu prepared by melt spinning and crystallization heat treatment, International Journal of Hydrogen Energy, 33(6), 1711(2008)
doi: 10.1016/j.ijhydene.2008.01.006
|
11 |
C. Milanese, A. Girella, G. Bruni, P. Cofrancesco, V. Berbenni, P. Matteazzi, A. Marini, Mg-Ni-Cu mixtures for hydrogen storage: A kinetic study, Intermetallics, 18(2), 203(2010)
doi: 10.1016/j.intermet.2009.07.012
|
12 |
Q. A. Zhang, D. D. Liu, Q. Q. Wang, F. Fang, D. L. Sun, L. Z. Ouyang, M. Zhu, Superior hydrogen storage kinetics of Mg12YNi alloy with a long-period stacking ordered phase, Scripta Materialia, 65(3), 233(2011)
doi: 10.1016/j.scriptamat.2011.04.014
|
13 |
J. W. Liu, C. C. Zou, H. Wang, L. Z. Ouayng, M. Zhu, Facilitating de/hydrogenation by long-period stacking ordered structure in Mg based alloys, International Journal of Hydrogen Energy, 38(25), 10438(2013)
doi: 10.1016/j.ijhydene.2013.05.149
|
14 |
S. Kalinichenka, L. Röntzsch, T. Riedl, T. Gemming, T. Weißgärber, B. Kieback, Microstructure and hydrogen storage properties of melt-spun Mg-Cu-Ni-Y alloys, International Journal of Hydrogen Energy, 36(2), 1592(2011)
doi: 10.1016/j.ijhydene.2010.10.099
|
15 |
SUN Guoyuan, CHEN Guang, SUN Jinqiang, Study on Mg-TM-Ln type nanostructured materials, Chinese Rare Earths, 25(5), 7(2004)
|
|
(孙国元, 陈光, 孙强金, Mg-TM-Ln型镁基纳米结构材料研究, 稀土, 25(5), 7(2004))
doi: 10.3969/j.issn.1004-0277.2004.05.015
|
16 |
JIANG Min, ZHANG Junfeng, LI Hongxiao, HAO Shiming, Study on the long period ordered (LPO) phasein the Mg-TM (TM=Cu, Ni, Zn)-Y systems, Journal of Materials and Metallurgy, 9(4), 282(2010)
|
|
(蒋敏, 张俊峰, 李洪晓, 郝世明, Mg-TM(TM=Cu, Ni, Zn)-Y体系长周期有序(LPO)相的研究, 材料与冶金学报, 9(4), 282(2010))
|
17 |
M. Matsuura, K. Konno, M. Yoshida, M. Nishijima, K. Hiraga, Precipitates with peculiar morphology consisting of a disk-shaped amorphous core sandwiched between 14H-typed long period stacking order crystals in a melt-quenched Mg98Cu1Y1alloy, Materials Transactions, 47(4), 1264(2006)
doi: 10.2320/matertrans.47.1264
|
18 |
Y. Kawamura, T. Kasahara, S. Izumi, M. Yamasaki, Elevated temperature Mg97Y2Cu1 alloy with long period ordered structure, Scripta Materialia, 55(5), 453(2006)
|
19 |
G. Garces, P. Perez, S. Gonzalez, P. Adeva, Development of long-period ordered structures during crystallisation of amorphous Mg80Cu10Y10 and Mg83Ni9Y8, International Journal of Materials Research, 97(4), 404(2006)
|
20 |
A. Zaluska, L. Zaluski, J. O.Strom-Olsen, Nanocrystalline magnesium for hydrogen storage, Journal of Alloys and Compounds, 288(1-2), 217(1999)
|
21 |
P. A. Huhn, M. Dornheim, T. Klassen, R. Bormann, Thermal stability of nanocrystalline magnesium for hydrogen storage, Journal of Alloys and Compounds, 404, 499(2005)
doi: 10.1016/j.jallcom.2004.10.087
|
22 |
K. F.Aguey-Zinsou, J. R. A. Fernandez, T. Klassen, R. Bormann, Effect of Nb2O5 on MgH2 properties during mechanical milling, International Journal of Hydrogen Energy, 32(13), 2400(2007)
doi: 10.1016/j.ijhydene.2006.10.068
|
23 |
J. Lu, Y. J. Choi, Z. Z. Fang, H. Y. Sohn, E. Rönnebro, Hydrogen storage properties of nanosized MgH2-0.1TiH2prepared by ultrahigh-energy-high-pressure milling, Journal of the American Chemical Society, 2009. 131(43), 15843(2009)
|
24 |
J. Cui, H. Wang, J. W. Liu, L. Z. Ouyang, Q. A. Zhang, D. L. Sun, X. D. Yao, M. Zhu, Remarkable enhancement in dehydrogenation of MgH2 by a nano-coating of multi-valence Ti-based catalysts, Journal of Materials Chemistry A, 1(18), 5603(2013)
doi: 10.1039/c3ta01332d
|
25 |
Y. J. Choi, J. Lu, H. Y. Sohn, Z. Z. Fang, Hydrogen storage properties of the Mg-Ti-H system prepared by high-energy-high-pressure reactive milling, Journal of Power Sources, 180(1), 491(2008)
|
26 |
A. Seiler, L. Schlapbach, T. Von Waldkirch, D. Shaltiel, F. Stucki, Surface analysis of Mg2Ni-Mg, Mg2Ni and Mg2Cu, Journal of the Less Common Metals, 73(1), 193(1980)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|