Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (4): 248-254    DOI: 10.11901/1005.3093.2015.189
Orginal Article Current Issue | Archive | Adv Search |
Enhancing Effect of LPSO Phases on Hydrogen ab- and de-Sorption Kinetics of Mg94Cu4Y2 Alloy
LIU Jiangwen, ZOU Changcheng, WANG Hui**(), OUYANG Liuzhang, ZENG Meiqin, ZHU Min
Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
Cite this article: 

LIU Jiangwen, ZOU Changcheng, WANG Hui, OUYANG Liuzhang, ZENG Meiqin, ZHU Min. Enhancing Effect of LPSO Phases on Hydrogen ab- and de-Sorption Kinetics of Mg94Cu4Y2 Alloy. Chinese Journal of Materials Research, 2016, 30(4): 248-254.

Download:  HTML  PDF(5329KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

An alloy Mg94Cu4Y2 with a large quantity of long-period stacking ordered (LPSO) phases bearing Cu and Y was designed and prepared in this paper. The microstructural transformations and the hydrogen absorption/desorption properties of the alloy were characterized during hydrogenation and dehydrogenation processes. The cast Mg94Cu4Y2 alloy consists of phases such as Mg, Mg2Cu and LPSOs with 18R or 14H type. The LPSOs decomposed at the first hydrogenation, and in situ formed highly even dispersed nanocomposite (MgH2+MgCu2+YH3). The Mg/MgH2 was the main reaction during the subsequent dehydrogenation cycles. The alloy exhibits excellent hydrogen absorption and desorption kinetics because the nano-sized and even dispersed Mg2Cu and YH2 catalyzed effectively the Mg/MgH2 reactions.

Key words:  metallic materials      hydrogen storage alloy      Mg-Cu-Y      long period stacking ordered structure      kinetics      TEM     
Received:  08 April 2015     
ZTFLH:  TG139  
Fund: Supported by National Natural Science Foundation of China Nos. 51431001, 51271078 & U120124, Guangdong Natural Science Foundation Nos. 10151064101000013, 2014A030313222 & 2014A030311004, GDUPS (2014), and International Science & Technology Cooperation Program of China No. 2015DFA51750.
About author:  To whom correspondence should be addressed, Tel: (020)87112830, E-mail: mehwang@scut.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.189     OR     https://www.cjmr.org/EN/Y2016/V30/I4/248

Fig.1  BSE micrograph showing the microstructure of the as cast Mg94Cu4Y2 alloy
Fig.2  Fine structure of Mg94Cu4Y2 (a) typical BF TEM image showing the LPSO and adjacent Mg2Cu; (b) HRTEM micrograph of 14H-LPSO and inset showing corresponding SAEDP indexed zone axis [112?0]LPSO; (c) HRTEM micrograph of 18R-LPSO and corresponding SAEDPs indexed zone axis [010]LPSO; and (d) Mg and Mg2Cu with inset of corresponding SAEDP
Fig.3  XRD patterns of the alloy in the states of as cast, hydrogenated and dehydrogenated, respectively
Fig.4  TEM micrographs of dehydrogenated Mg94Cu4Y2, (a) Morphology; (b) Selected area electron diffraction patterns taken from (a); (c) TEM dark field image of Mg2Cu using reflection {022}; (d) HRTEM micrograph of Mg, YH2, Mg2Cu and MgCu2 particles
Fig.5  Isothermal hydrogenation curves of the dehydrogenated sample under 2 MPa hydrogen pressure at 200, 250, 280, 300 and 350°C, respectively
Fig.6  Isothermal dehydrogenation curves of the hydrogenated sample at 250, 280, 300, and 350℃, respectively
Fig.7  Sketch showing the microstructural mechanism of Mg94Cu4Y2 Alloy during the hydrogenation and dehydrogenation
1 M. Zhu, Y. Lu, L. Z. Ouyang, H. Wang, Thermodynamic tuning of Mg-based hydrogen storage alloys: Areview, Materials, 6(10), 4654(2013)
doi: 10.3390/ma6104654
2 B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, Metal hydride materials for solid hydrogen storage: a review, International Journal of Hydrogen Energy, 32(9), 1121(2007)
doi: 10.1016/j.ijhydene.2006.11.022
3 P. Chen, M. Zhu, Recent progress in hydrogen storage, Materials Today, 11(12), 36(2008)
doi: 10.1016/S1369-7021(08)70251-7
4 J. J. Reilly, R. H. Wiswall, Reaction of hydrogen with alloys of magnesium and copper, Inorganic Chemistry, 6(12), 2220(1967)
doi: 10.1021/ic50058a020
5 T. Von Waldkirch, A. Seiler, P. Zürcher, H. J. Mathieu, Mg-based hydrogen storage materials: Surface segregation in Mg2Cu and related catalytic effects, Materials Research Bulletin, 15(3), 353(1980)
6 N.Takeichi, K. Tanaka, H. Tanaka, T. Ueda, Y. Kamiya, M. Tsukahara, H. Miyamura, S. Kikuchi, Hydrogen storage properties of Mg/Cu and Mg/Pd laminate composites and metallographic structure, Journal of Alloys and Compounds,, 446-447(0), 543(2007)
doi: 10.1557/PROC-1128-U01-04
7 J. P. Lei, H.Huang, X. L.Dong, J. P. Sun, B. Lu, M. K. Lei, Q. Wang, C. Dong, G. Z. Cao, Formation and hydrogen storage properties of in situ prepared Mg-Cu alloy nanoparticles by arc discharge, International Journal of Hydrogen Energy, 34(19), 8127(2009)
doi: 10.1016/j.ijhydene.2009.07.092
8 A. Karty, X. Grunzweig, J. Genossar, P. S. Rudman, Hydriding and dehydriding kinetics of Mg in a Mg/Mg2Cu eutectic alloy: Pressure sweep method, Journal of Applied Physics, 50(11), 7200(1979)
9 Y. H. Zhang, B. W. Li, H. P. Ren, S. H. Guo, D. L. Zhao, X. L. Wang, Hydrogenation and dehydrogenation behaviours of nanocrystalline Mg20Ni10-xCux (x=0-4) alloys prepared by melt spinning, International Journal of Hydrogen Energy, 35(5), 2040(2010)
doi: 10.1016/j.ijhydene.2009.12.029
10 M. Y. Song, S. N. Kwon, J. Bae, S. Hong, Hydrogen-storage properties of Mg-23.5Ni- (0 and 5) Cu prepared by melt spinning and crystallization heat treatment, International Journal of Hydrogen Energy, 33(6), 1711(2008)
doi: 10.1016/j.ijhydene.2008.01.006
11 C. Milanese, A. Girella, G. Bruni, P. Cofrancesco, V. Berbenni, P. Matteazzi, A. Marini, Mg-Ni-Cu mixtures for hydrogen storage: A kinetic study, Intermetallics, 18(2), 203(2010)
doi: 10.1016/j.intermet.2009.07.012
12 Q. A. Zhang, D. D. Liu, Q. Q. Wang, F. Fang, D. L. Sun, L. Z. Ouyang, M. Zhu, Superior hydrogen storage kinetics of Mg12YNi alloy with a long-period stacking ordered phase, Scripta Materialia, 65(3), 233(2011)
doi: 10.1016/j.scriptamat.2011.04.014
13 J. W. Liu, C. C. Zou, H. Wang, L. Z. Ouayng, M. Zhu, Facilitating de/hydrogenation by long-period stacking ordered structure in Mg based alloys, International Journal of Hydrogen Energy, 38(25), 10438(2013)
doi: 10.1016/j.ijhydene.2013.05.149
14 S. Kalinichenka, L. Röntzsch, T. Riedl, T. Gemming, T. Weißgärber, B. Kieback, Microstructure and hydrogen storage properties of melt-spun Mg-Cu-Ni-Y alloys, International Journal of Hydrogen Energy, 36(2), 1592(2011)
doi: 10.1016/j.ijhydene.2010.10.099
15 SUN Guoyuan, CHEN Guang, SUN Jinqiang, Study on Mg-TM-Ln type nanostructured materials, Chinese Rare Earths, 25(5), 7(2004)
(孙国元, 陈光, 孙强金, Mg-TM-Ln型镁基纳米结构材料研究, 稀土, 25(5), 7(2004))
doi: 10.3969/j.issn.1004-0277.2004.05.015
16 JIANG Min, ZHANG Junfeng, LI Hongxiao, HAO Shiming, Study on the long period ordered (LPO) phasein the Mg-TM (TM=Cu, Ni, Zn)-Y systems, Journal of Materials and Metallurgy, 9(4), 282(2010)
(蒋敏, 张俊峰, 李洪晓, 郝世明, Mg-TM(TM=Cu, Ni, Zn)-Y体系长周期有序(LPO)相的研究, 材料与冶金学报, 9(4), 282(2010))
17 M. Matsuura, K. Konno, M. Yoshida, M. Nishijima, K. Hiraga, Precipitates with peculiar morphology consisting of a disk-shaped amorphous core sandwiched between 14H-typed long period stacking order crystals in a melt-quenched Mg98Cu1Y1alloy, Materials Transactions, 47(4), 1264(2006)
doi: 10.2320/matertrans.47.1264
18 Y. Kawamura, T. Kasahara, S. Izumi, M. Yamasaki, Elevated temperature Mg97Y2Cu1 alloy with long period ordered structure, Scripta Materialia, 55(5), 453(2006)
19 G. Garces, P. Perez, S. Gonzalez, P. Adeva, Development of long-period ordered structures during crystallisation of amorphous Mg80Cu10Y10 and Mg83Ni9Y8, International Journal of Materials Research, 97(4), 404(2006)
20 A. Zaluska, L. Zaluski, J. O.Strom-Olsen, Nanocrystalline magnesium for hydrogen storage, Journal of Alloys and Compounds, 288(1-2), 217(1999)
21 P. A. Huhn, M. Dornheim, T. Klassen, R. Bormann, Thermal stability of nanocrystalline magnesium for hydrogen storage, Journal of Alloys and Compounds, 404, 499(2005)
doi: 10.1016/j.jallcom.2004.10.087
22 K. F.Aguey-Zinsou, J. R. A. Fernandez, T. Klassen, R. Bormann, Effect of Nb2O5 on MgH2 properties during mechanical milling, International Journal of Hydrogen Energy, 32(13), 2400(2007)
doi: 10.1016/j.ijhydene.2006.10.068
23 J. Lu, Y. J. Choi, Z. Z. Fang, H. Y. Sohn, E. Rönnebro, Hydrogen storage properties of nanosized MgH2-0.1TiH2prepared by ultrahigh-energy-high-pressure milling, Journal of the American Chemical Society, 2009. 131(43), 15843(2009)
24 J. Cui, H. Wang, J. W. Liu, L. Z. Ouyang, Q. A. Zhang, D. L. Sun, X. D. Yao, M. Zhu, Remarkable enhancement in dehydrogenation of MgH2 by a nano-coating of multi-valence Ti-based catalysts, Journal of Materials Chemistry A, 1(18), 5603(2013)
doi: 10.1039/c3ta01332d
25 Y. J. Choi, J. Lu, H. Y. Sohn, Z. Z. Fang, Hydrogen storage properties of the Mg-Ti-H system prepared by high-energy-high-pressure reactive milling, Journal of Power Sources, 180(1), 491(2008)
26 A. Seiler, L. Schlapbach, T. Von Waldkirch, D. Shaltiel, F. Stucki, Surface analysis of Mg2Ni-Mg, Mg2Ni and Mg2Cu, Journal of the Less Common Metals, 73(1), 193(1980)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] CHEN Jingjing, ZHAN Huimin, WU Hao, ZHU Qiaolin, ZHOU Dan, LI Ke. Tensile Mechanical Performance of High Entropy Nanocrystalline CoNiCrFeMn Alloy[J]. 材料研究学报, 2023, 37(8): 614-624.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!