Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (11): 809-813    DOI: 10.11901/1005.3093.2014.220
Current Issue | Archive | Adv Search |
Microstructure of Welding Seam and its Effect on Propagation of Microcracks in Nulear Gade Z3CN20-09M Sainless Seel
Wei WANG,Kuilin LUO,Yonghao LU()
School of National Center for Materials Service Safety, University of Science and Technology Beijing 100083
Cite this article: 

Wei WANG,Kuilin LUO,Yonghao LU. Microstructure of Welding Seam and its Effect on Propagation of Microcracks in Nulear Gade Z3CN20-09M Sainless Seel. Chinese Journal of Materials Research, 2014, 28(11): 809-813.

Download:  HTML  PDF(5819KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructure of welding seam was characterized by optical microscope and SEM, and then of which the effect on crack propagation was studied by means of situ tensile test in SEM and EBSD technique for a nuclear grade stainless Z3CN20-09M. The results show that the weld seam composes of lath-shaped and island-like microstructures and different microstructures exhibited different resistance to crack propagation. Island-like microstructure has a strong resistance to the crack propagation, which can induce a deflection of the path way of crack propagation; while lath-shaped structure showed little effect on crack propagation, and the crack passed though the lath-shaped microstructure quickly without any deflection.

Key words:  metallic materials      nuclear grade stainless steel      welding seam      microstructure      crack     
Received:  28 April 2014     
Fund: 

*Supported by National Science and Technology Major Project 2011ZX06004-009.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.220     OR     https://www.cjmr.org/EN/Y2014/V28/I11/809

% C Si Mn P S Cr Ni Cu Co Mo Bal
0.02 1.07 1.02 0.017 0.0023 20.16 8.93 0.063 0.026 0.22
Table 1  Chemical component of Z3CN20-09M (%, mass fraction)
Fig.1  Simulation picture of situ tensile tests sample
Fig.2  Optical micrographs of weld seam
Fig.3  Microstructure relationship between δ and γ phase in island-like and lath-like structures (a) and (b) is the pore figure of ferrite and austenite in island-like structures; (c) and (d) is the pore figure of ferrite and austenite in lath-like structures
Fig.4  EBSD analyse of microstructures in weld seam (a) SEM of weld seam; (b) Distribution graph of high-angle boundary; (c) Distribution graph of twin crystal boundary and phase boundary; (d) Distribution graph of inner stress
Fig.5  Crack progation in weld microstructures at different stage
Fig.6  Fracture morphologies of specimens in weld joint
1 Mei Lifang,Chen Genyu, Jin Xiangzhong, Research on laser welding of high-strength galvanized automobile steel sheets, Optics and Laser in Engineering, 47(11), 1117
2 Liu Qi bin, Laser Processing Technology and Application, Beijing: metallurgical industry press, 2007
2 (, 2007)
3 Wu Qiang,Chen Gen-yu, Wang Gui, CO2 Laser Welding of Zinc Coated High Strength Steel, Chinese Journal Of Lasers, 33(8), 1133(2006)
3 (伍 强, 陈根余, 王 贵等, 高强度镀锌钢的CO2激光焊接, 中国激光, 33(8), 1133(2006))
4 Yan Yu he, Zhong Minshen, High power laser processing and its application, Tianjin: Tianjin Science and Technology Press, 1994
4 (闫毓禾, 钟敏霖, 高功率激光加工及其应用, 天津: 天津科学技术出版社, 1994)
5 M. J.Torkamany, J. Sabbaghzadeh, M. J. Hamedi,Effect of laser welding mode on the microstructure and mechanical performance of dissimilar laser spot welds between low carbon and austenitic stainless steels, Materials and Design, 34, 666(2012)
6 Gu Zheng wei,Yu Si bin, Han Li jun, Effect of welding speed on microstructure and microhardness of the weld seam of laser welded ultrahigh strength steel, Journal of Jilin University (Engineering and Technology Edition), 42(3), 556(2012)
6 (谷诤巍, 于思彬, 韩立军, 激光焊接速度对超高强度钢焊缝微观组织和显微硬度的影响, 吉林大学学报: 工学版, 42(3), 556(2012))
7 Sathiya P, Aravindan S, Ajith P M, et al. Microstructural characteristics on bead on plate welding of AISI 904 L super austenitic stainless steel using gas metal arc welding process, International Journal of Engineering Science and Technology, 2(6), 189(2010)
8 Jiang Yi Jing,Wang Rong, Tang Xinhua, Shape contral of laser welding seam and its influence factors, Hot Working Technology, ,(19), 20(2007)
8 (蒋意靖, 王 荣, 唐新华. 激光焊缝成形控制及其影响因素, 热加工工艺, (19), 20(2007))
9 Ma Yingjie,Liu Jianrong, Lei Jiafeng, Li Yulan, Liu Yuyan, Yang rui, Acta Metall Since, 44, 973(2008)
9 (马英杰, 刘建荣, 雷家峰, 李玉兰, 刘羽寅, 杨 锐, 金属学报, 44, 973(2008))
10 Zhang Xu dong,Chen Wu zhu, Laser Welding of 12 mm Low-Carbon Steel Plate with CO2 Shielding Gas, Transactions of the China Welding Institution, 23(6), 51(2002)
10 (张旭东, 陈武柱, CO2气体保护的激光焊接12 mm厚低碳钢板, 焊接学报, 23(6), 51(2002))
11 Li M,Li Z, Zhao Y, Influence of welding parameters on weld formation and microstructure of dual-laser beams welded T-Joint of aluminum alloy, Advances in Materials Science and Engineering, 2011, 225(2011)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] CHEN Jingjing, ZHAN Huimin, WU Hao, ZHU Qiaolin, ZHOU Dan, LI Ke. Tensile Mechanical Performance of High Entropy Nanocrystalline CoNiCrFeMn Alloy[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
No Suggested Reading articles found!