Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (3): 180-184    DOI: 10.11901/1005.3093.2013.665
Current Issue | Archive | Adv Search |
Preparation and Properties of Polypyrrole-Co0.5Zn0.5Fe2O4 Composites
Ruiting MA,Ling HE,Xiao WANG,Haitao ZHAO()
School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159
Cite this article: 

Ruiting MA,Ling HE,Xiao WANG,Haitao ZHAO. Preparation and Properties of Polypyrrole-Co0.5Zn0.5Fe2O4 Composites. Chinese Journal of Materials Research, 2014, 28(3): 180-184.

Download:  HTML  PDF(1426KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nanocrystallined cobalt zinc ferrite was prepared by polyacrylamide gel process, and then the polypyrrole (PPy)-cobalt zinc ferrite composites were synthesized by in-situ chemical polymerization. The microstructure and morphology of the composites were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The magnetic and microwave dielectric properties of the composites were measured by vibrating sample magnetometer (VSM) and vector network analyzer of E5071C. The results show that the products are composites consisted of pure PPy and PPy-Co0.5Zn0.5Fe2O4, and the average particle sizes of PPy and PPy-Co0.5Zn0.5Fe2O4 are about 200 nm and 180 nm, respectively. The saturation magnetization (Ms) and remanent magnetization (Mr) of the Co0.5Zn0.5Fe2O4 are 65.95 emu/g and 15.44 emu/g, respectively, and they are greater than that of PPy-Co0.5Zn0.5Fe2O4, but the coercive force (Hc) of the Co0.5Zn0.5Fe2O4 is smaller than that of PPy-Co0.5Zn0.5Fe2O4. Owing to the introduction of Co0.5Zn0.5Fe2O4 ferrites into the PPy matrix, the dielectric loss (tanε=ε''/ε') of the PPy is greater than that of the PPy-Co0.5Zn0.5Fe2O4, but the reflection loss of the PPy is smaller than that of the PPy-Co0.5Zn0.5Fe2O4. The maximum reflection loss of the PPy–Co0.5Zn0.5Fe2O4 composite is about -16.4 dB at 15.2 GHz with a bandwidth of 2.5 GHz.

Key words:  composites      PPy-Co0.5Zn0.5Fe2O4      magnetic properties      reflection loss     
Received:  13 September 2013     
Fund: *Supported by National Natural Science Foundation of China No.51303108.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.665     OR     https://www.cjmr.org/EN/Y2014/V28/I3/180

Fig.1  XRD patterns of the composites. (a) PPy, (b) PPy-Co0.5Zn0.5Fe2O4 and (c) Co0.5Zn0.5Fe2O4
Fig.2  SEM images of PPy (a) and PPy-Co0.5Zn0.5Fe2O4 (b) composites
Fig.3  Hysteresis loops of Co0.5Zn0.5Fe2O4 (a) and PPy-Co0.5Zn0.5Fe2O4 (b)
Magnetic parameter Co0.5Zn0.5Fe2O4 PPy-Co0.5Zn0.5Fe2O4
Ms / (emu/g) Mr / (emu/g) Hc / Oe 65.95 15.44 153.51 1.43 0.26 161.88
Table 1  Magnetic parameters of Co0.5Zn0.5Fe2O4 and PPy-Co0.5Zn0.5Fe2O4 composites
Fig.4  Microwave dielectric loss of the composites. (a) PPy, (b) PPy-Co0.5Zn0.5Fe2O4
Fig.5  Curves of microwave reflection loss of PPy (a) and PPy-Co0.5Zn0.5Fe2O4 (b) composites
1 NIU Fangfang,HUANG Ying, JI Wen, Preparation and properties of Pr doped Ba ferrite/polypyrrole composite film, Chinese Journal of Materials Research, 25(1), 99(2011)
1 (牛芳芳, 黄 英, 季 文, 镨掺杂钡铁氧体-聚吡咯复合膜的制备和性能, 材料研究学报, 25(1), 99(2011))
2 Y. Xie, X. W. Hong, Y. H. Gao,Synthesis and characterization of La/Nd-doped barium-ferrite/polypyrrole nanocomposites, Synth. Met., 162, 677(2012)
3 A. H. Chen, H. Q. Wang, B. Zhao,The preparation of polypyrroler Fe3O4 nanocomposites by the use of commonion effect, Synth. Met., 139(2), 411(2003)
4 PAN Lingling,WANG Yuping, LI Liangchao, Preparation and magnetic properties of La-doped Sr ferrite/polypyrrole composites, Acta Chimica Sinica, 66(13), 1559(2008)
4 (潘玲玲, 王育萍, 李良超, 镧掺杂锶铁氧体-聚吡咯复合物的制备及磁性研究, 化学学报, 66(13), 1559(2008))
5 W. Chen, X. W. Li, G. Xue,Magnetic and conducting particles: Preparation of polypyrrole layer on Fe3O4 nanospheres, Appl. Surf. Sci., 218(1-4), 215(2003)
6 M. E. Rincon, H. Hu, Z. G. Martine,Effect of Bi2S3 nanoparticles in the protection mechanism of polypyrrole thin films, Synth. Met., 139, 63(2011)
7 N. Murillo, E. Ochoteco, A. Esancoy,CoFe2O4/polypyrrole(PPy) nanocomposites: new multifunctional materials, Nanotechnol., 15, 5322(2010)
8 T. Sachin, B. B. Himanshu, C. A. Ramesh,Development of hard soft ferrite nanocomposite for enhanced microwave absorption, Ceram. Int., 37, 2631(2011)
9 S. Vijutha, K. Philip, P. Mohanan,A flexible microwave absorber based on nickel ferrite nanocomposite, J. Alloys Compd., 489, 297(2010)
10 G. N. Mahmoud, B. S. Elias, A. A. Hossein,Simple preparation and characterization of nickel ferrite nanocrystals by a thermal treatment method, Powder Technol., 212, 80(2011)
11 G. Concas, G. Spano, C. Cannas,Inversion degree and saturation magnetization of different nanocrystalline cobalt ferrites, J. Magn. Magn. Mater., 321, 1893(2009)
12 R. T. Ma, Y. W. Tian, H. T. Zhao, G. Zhang, H. Zhao,Characterization and electromagnetic studies on nanocrystalline Co0.5Zn0.5Fe2O4 by polyacrylamide gel, J. Mater. Sci. Technol., 24(4), 628(2008)
13 LV Qiufeng,WENG Zhiyong, Synthesis and characterization of pplypyrrole nanoparticles via unstirred polymerization, Acta Polymerica Sinica, 6, 516(2009)
13 (吕秋丰, 翁志勇, 聚吡咯纳米颗粒的静态法合成及表征, 高分子学报, 6, 515(2009))
14 LI Liangchao,WANG Yuping, TONG Guoxiu, Controlled synthesis of PPy/Ba0.9Nd0.1Fe11.5Cr0.5O19 composites and its electrical-magnetic property, Scientia Sinica Chimica, 40(10), 1520(2010)
14 (李良超, 王育萍, 童国秀, 聚吡咯/Ba0.9Nd0.1Fe11.5Cr0.5O19复合物的可控合成及电磁性能, 中国科学: 化学, 40(10), 1519(2010))
15 LI Yuanxun,LIU Yingli, ZHANG Huaiwu, Preparation, characterization and properties of polyaniline-barium ferrite nanocomposite, Chemical Journal of Chinese Universities, 29(3), 641(2008)
15 (李元勋, 刘颖力, 张怀武, 聚苯胺钡铁氧体纳米复合材料的制备、表征及性能, 高等学校化学学报, 29(3), 640(2008))
16 SU Bitao,ZUO Xianwei, HU Changlin, LEI Ziqiang, Synthesis and electromagnetic properties of polyaniline/CoFe2O4 nanocomposite, Acta Physical Chimica Sinica, 24(10), 1934(2008)
16 (苏碧桃, 左显维, 胡场林, 雷自强, 导电聚苯胺与磁性CoFe2O4 纳米复合物的合成及其电磁性能, 物理化学学报, 24(10), 1934(2008))
[1] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[2] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[3] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[4] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[5] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[6] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[7] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[8] HE Ying, LI Chaoqun, CHEN Xiaoli, LONG Zhimei, LAI Jiaqi, SHAO Bin, MA Yilong, CHEN Dengming, DONG Jiling. Recent Development for Preparation Processes of Sm2Fe17N x Powders with High Magnetic Properties[J]. 材料研究学报, 2022, 36(5): 321-331.
[9] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[10] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[11] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[12] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[13] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[14] HU Manying, OUYANG Delai, CUI Xia, DU Haiming, XU Yong. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering[J]. 材料研究学报, 2021, 35(4): 277-283.
[15] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
No Suggested Reading articles found!