Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (1): 51-58    DOI: 10.11901/1005.3093.2013.329
Current Issue | Archive | Adv Search |
Effect of Thermo-mechanical Control Process on Microstructure of High Strength X100 Pipeline Steel
Linna DUAN1,2,**(),Yu CHEN3,Qingyou LIU2,Shujun JIA2,Chengchang JIA1
1. School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2. Institute for Engineering Steel, Central Iron and Steel Research Institute, Beijing 100081
3. China Petroleum Engineering and Construction Corporation, Beijing 100120
Cite this article: 

Linna DUAN,Yu CHEN,Qingyou LIU,Shujun JIA,Chengchang JIA. Effect of Thermo-mechanical Control Process on Microstructure of High Strength X100 Pipeline Steel. Chinese Journal of Materials Research, 2014, 28(1): 51-58.

Download:  HTML  PDF(12060KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The transformation of undercooling austenite in a X100 pipeline steel was investigated by means of thermal simulation test. Based on the obtained results, a thermo-mechanical control process (TMCP) by which a mixed microstructure mainly consisted of granular bainite and lath bainite can be obtained has been proposed and effects of finish rolling deformation amount, cooling rate and final cooling temperature on microstructure have been analyzed. The results show that the microstructure of tested steel gradually refines and the volume fraction of lath bainite decreases with the increase of deformation amount. With the increase of cooling rate and the decrease of final cooling temperature, microstructure refines and volume fraction of lath bainite increases obviously. High volume fraction of lath bainite in microstructure is good for high strength. However, excessively high volume fraction of lath bainite and M/A islands with the shape of acicular have harmful influences on toughness.

Key words:  metallic materials      X100 pipeline steel      deformation amount      cooling rate      final cooling temperature      microstructure     
Received:  17 May 2013     
Fund: *Supported by National "Twelfth Five-Year" Plan for Science & Technology Support No.2011BAE35B01.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.329     OR     https://www.cjmr.org/EN/Y2014/V28/I1/51

Fig.1  Schematic illustration of thermal simulation test (1) e=20, 30, 40, 50%, CR=25℃/s, T=360℃; (2) e=40%, CR=10, 20, 25, 30, 40, 50℃/s, T=360℃; (3) e=40%, CR=25℃/s, T=420, 400, 380, 360, 340, 320, 300℃
Fig.2  Microstructure of continuously cooled specimens (a) 0.03℃/s; (b) 0.06℃/s; (c) 0.14℃/s; (d) 0.28℃/s; (e) 0.8℃/s; (f) 1.6℃/s; (g) 4℃/s; (h) 8℃/s; (i) 16℃/s
Fig.3  Static CCT curve of the tested steel
Fig.4  Effect of finish rolling deformation amount on microstructure of tested steel, (a) 20%; (b) 30%; (c) 40%; (d) 50%
Fig.5  SEM micrograph of microstructure of tested steel at different cooling rate (a) 10℃/s; (b) 20℃/s; (c) 25℃/s; (d) 30℃/s; (e) 40℃/s; (f) 50℃/s
Fig.6  Effect of cooling rate on micro-hardness of tested steel
Fig.7  SEM micrograph of microstructure of tested steel at different final cooling temperature (a) 420℃; (b) 400℃; (c) 380℃; (d) 360℃; (e) 340℃; (f) 300℃
Fig.8  Effect of final cooling temperature on micro-hardness of tested steels
Rolling direction Tensile strength/MPa Yield strength/MPa Elongation after fracture/% Yield ratio Akv(J) -20℃
TD 912 740 17.0 0.81 282
RD 890 735 18.0 0.83
RD 30° 858 705 18.0 0.82
Table 1  Chemical properties of the tested steel
Fig.9  EBSD maps of tested steel at different cooling rate (a) 25℃/s; (b) 40℃/s
Fig.10  Misorientation angle maps of the tested steel (a) 25℃/s; (b) 40℃/s
1 TONG Ke,ZHUANG Chuanjing, LIU Qiang, HAN Xinli, ZHU Lixia, HE Xiaodong, Microstructure characteristics of M/A islands in high grade pipeline steel and its effect on mechanical properties, Materials for Mechanical Engineering, 35(2), 4(2011)
1 (仝 珂, 庄传晶, 刘 强, 韩新利, 朱丽霞, 何晓东, 高钢级管线钢中M/A岛的微观特征及其对力学性能的影响, 机械工程材料, 35(2), 4(2011))
2 ZHONG Yong,WANG Zhongjun, SHAN Yiyin, YANG Ke, Effect of hot deformation and followed cooling on microstructure of low-carbon microalloyed pipe-line steel, Chinese Journal of Materials Research, 17(3), 305(2003)
2 (钟 勇, 王忠军, 单以银, 杨 柯, 热变形对超纯净管线钢组织的影响, 材料研究学报, 17(3), 305(2003))
3 ZHANG Xiaoyong,GAO Huilin, JI Lingkang, ZHUANG Chuanjing, Microstructure of X100 high strength pipeline steel during continuous cooling transformation, Transactions of Materials and Heat Treatment, 31(1), 62(2010)
3 (张骁勇, 高慧临, 吉玲康, 庄传晶, X100管线钢连续冷却转变的显微组织, 材料热处理学报, 31(1), 62(2010))
4 YU Shaofei,QIAN Bainian, GUO Xuming, Effect of accelerating cooling on microstructure and toughness of HAZ of X70 pipeline steel, Acta Metallurgica Sinica, 41(4), 402(2005)
4 (于少飞, 钱百年, 国旭明, 加速冷却对X70钢热影响区组织与韧性的影响, 金属学报, 41(4), 402(2005))
5 ZHAO Mingchun,SHAN Yiyin, QU Jinbo, YANG Ke, Effect of thermo-mechanical control process on microstructures and mechanical properties of X60 pipeline steel, Acta Metallurgica Sinica, 37(2), 179(2001)
5 (赵明纯, 单以银, 曲锦波, 杨 柯, 控轧控冷工艺对X60管线钢组织及力学性能的影响, 金属学报, 37(2), 179(2001))
6 HUANG Jian,DUAN Linna, LIU Qingyou, SUN Xinjun, CAO Jianchun, JIANG Maofa, Effect of Mo addition on microstructure and CCT curves of Nb microalloyed pipeline steel, Transactions of Materials and Heat Treatment, 30(5), 97(2009)
6 (黄 健, 段琳娜, 刘清友, 孙新军, 曹建春, 姜茂发, 添加Mo对高Nb管线钢组织和CCT曲线的影响, 材料热处理学报, 30(5), 97(2009))
7 FANG Hongsheng, Bainitic Transformation, (Beijing, Science Press, 1999)p.23, 59
7 (方鸿生, 贝氏体相变, (北京, 科学出版社, 1999)p.23, 59)
8 ZHAO Mingchun,SHAN Yiyin, QU Jinbo, XIAO Furen, ZHONG Yong, YANG Ke, Acicular ferrite formation in a pipeline steel with thermo-mechanical control process, Acta Metallurgica Sinica, 37(8), 821(2001)
8 (赵明纯, 单以银, 曲锦波, 肖福仁, 钟勇, 杨柯, 控制热加工下管线钢中针状铁素体的形成, 金属学报, 37(8), 821(2001))
9 FANG Hongsheng,YANG Zhigang, YANG Jinbo, BAI Bingzhe, Research on bainite transformation in steels, Acta Metallurgica Sinica, 41(5), 451(2005)
9 (方鸿生, 杨志刚, 杨金波, 白秉哲, 钢中贝氏体相变机制的研究, 金属学报, 41(5), 451(2005))
10 SHANG Chengjia,YANG Shanwu, WANG Xuemin, HOU Huaxing, YU Gongli, WANG Wenzhong, Microstructure and mechanical properties of low carbon bainitic steel, Iron and Steel, 40(4), 59(2005)
10 (尚成嘉, 杨善武, 王学敏, 侯华兴, 于功利, 王文仲, 低碳贝氏体钢的组织类型及其对性能的影响, 钢铁, 40(4), 59(2005))
11 Manohar P A,Chandra T, Continuous cooling transformation behaviour of high strength microalloyed steels for linepipe applications, ISIJ Int, 38(7), 771(1998)
12 YANG Jinghong,LIU Qingyou, SUN Dongbai, LI Xiangyang, Effect of cooling rate and deformation on transformation and microstructure of X70 grade pipeline steel, Transactions of Materials and Heat Treatment, 29(5), 62(2008)
12 (杨景红, 刘清友, 孙冬柏, 李向阳, 冷速及变形对X70级管线钢相变及组织的影响, 材料热处理学报, 29(5), 62(2008))
13 LIU Zongchang, REN Huiping, Diffusion Phase Transformation of Supercooled Austenite, (Beijing, Science Press, 2007)p.88
13 (刘宗昌, 任慧平, 过冷奥氏体扩散型相变, (北京, 科学出版社, 2007)p.88)
14 XU Zuyao, LIU Shikai, Bainitic Transformation and Bainite, (Beijing, Science Press, 1991)p.179
14 (徐祖耀, 刘世楷, 贝氏体相变与贝氏体, (北京, 科学出版社, 1991)p.179)
15 DENG Wei,GAO Xiuhua, QIN Xiaomei, GAO Xin, ZHAO Dewen, DU Linxiu, Effect of cooling rate on microstructure of deformed and undeformed X80 pipeline steels, Acta Metallurgica Sinica, 46(8), 962(2010)
15 (邓 伟, 高秀华, 秦小梅, 高 鑫, 赵德文, 杜林秀, 冷却速率对变形与未变形X80管线钢组织的影响, 金属学报, 46(8), 962(2010))
16 LAN Huifang,DU Linxiu, LI Zhuo, LIU Yanchun, LIU Xianghua, Effect of processing parameters on strength and toughness of high-strength steel, Transactions of Materials and Heat Treatment, 30(1), 63(2009)
16 (蓝慧芳, 杜林秀, 李卓, 刘彦春, 刘相华, 工艺参数对高强度钢强度及韧性的影响, 材料热处理学报, 30(1), 63(2009))
17 HE Xinlai, SHANG Chengjia, YANG Shanwu, WANG Xuemin, High Performance Low Carbon Bainitic Steel, (Beijing, Metallurgical Industry Press, 2008)p.108
17 (贺信莱, 尚成嘉, 杨善武, 王学敏, 高性能低碳贝氏体钢, (北京, 冶金工业出版社, 2008)p.108)
18 Rodrigues P C M,PereIoma E V, Santos D B, Mechanical properties of an HSLA bainitic steel subjected to controlled rolling with accelerated cooling, MateriaIs Science and Engineering A, 283, 139(2000)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!