|
|
|
| 非均质组织对高强度风电钢拉伸性能的影响 |
陈子豪1,2, 高崇2, 庞建超2( ), 麻衡3,4, 何康3,5, 李小武1, 李守新2, 张哲峰2 |
1.东北大学材料科学与工程学院 沈阳 110819 2.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 3.山钢股份莱芜分公司技术中心 济南 271104 4.北京科技大学冶金与生态工程学院 北京 100083 5.北京科技大学 钢铁共性技术协同创新中心 北京 100083 |
|
| Effect of Different Heterogeneous Microstructures on Tensile Properties of a High Strength Wind Power Steel Q500MD |
CHEN Zihao1,2, GAO Chong2, PANG Jianchao2( ), MA Heng3,4, HE Kang3,5, LI Xiaowu1, LI Shouxin2, ZHANG Zhefeng2 |
1.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3.Laiwu Branch Technology Center, Shandong Iron and Steel Co. , Ltd. , Jinan 271104, China 4.School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China 5.Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China |
引用本文:
陈子豪, 高崇, 庞建超, 麻衡, 何康, 李小武, 李守新, 张哲峰. 非均质组织对高强度风电钢拉伸性能的影响[J]. 材料研究学报, 2025, 39(11): 801-812.
Zihao CHEN,
Chong GAO,
Jianchao PANG,
Heng MA,
Kang HE,
Xiaowu LI,
Shouxin LI,
Zhefeng ZHANG.
Effect of Different Heterogeneous Microstructures on Tensile Properties of a High Strength Wind Power Steel Q500MD[J]. Chinese Journal of Materials Research, 2025, 39(11): 801-812.
| [1] |
Si J L, Ai L, Qiu C. Status and prospect of China's wind power development in 2023 [J]. Water Power, 2024, 50: 1
|
| [1] |
司俊龙, 艾 琳, 邱 辰. 2023年中国风电发展现状与展望 [J]. 水力发电, 2024, 50: 1
|
| [2] |
Zhang B H. Market analysis and technology development of wind energy steel in China [J]. Spec. Steel Technol., 2012, 18(1): 6
|
| [2] |
张宝荭. 国内风电用钢市场分析与技术开发 [J]. 特钢技术, 2012, 18(1): 6
|
| [3] |
Weng Y Q, Yang C F, Shang C J. State-of-the-art and development trends of HSLA steels in China [J]. Iron Steel, 2011, 46(9): 1
|
| [3] |
翁宇庆, 杨才福, 尚成嘉. 低合金钢在中国的发展现状与趋势 [J]. 钢铁, 2011, 46(9): 1
|
| [4] |
Liu D S, Cheng B G, Chen Y Y. Strengthening and toughening of a heavy plate steel for shipbuilding with yield strength of approximately 690 MPa [J]. Metall. Mater. Trans., 2013, 44A(1): 440
|
| [5] |
Dhua S K, Ray A, Sarma D S. Effect of tempering temperatures on the mechanical properties and microstructures of HSLA-100 type copper-bearing steels [J]. Mater. Sci. Eng., 2001, 318A(1-2): 197
|
| [6] |
Yu Q B, Zhao X P, Sun B, et al. Yield-strength ratio of steel plate for high-rise building [J]. Iron Steel, 2007, 42(11): 74
|
| [6] |
于庆波, 赵贤平, 孙 斌 等. 高层建筑用钢板的屈强比 [J]. 钢铁, 2007, 42(11): 74
|
| [7] |
Wang F, Shi G, Dai G X, et al. Research advance of influence of yield-to-tensile strength ratio on seismic behavior of steel frames [J]. J. Build. Struct., 2010, 31(S1): 18
|
| [7] |
王 飞, 施 刚, 戴国欣 等. 屈强比对钢框架抗震性能影响研究进展 [J]. 建筑结构学报, 2010, 31(S1): 18
|
| [8] |
Kang J, Li C N, Li X L, et al. Effects of processing variables on microstructure and yield ratio of high strength constructional steels [J]. J. Iron Steel Res. Int., 2016, 23: 815
|
| [9] |
Sohrabi M J, Mirzadeh H, Mehranpour M S, et al. Aging kinetics and mechanical properties of copper-bearing low-carbon HSLA-100 microalloyed steel [J]. Arch. Civ. Mech. Eng., 2019, 19(4): 1409
|
| [10] |
Ding F X, Lan L F, Yu Y J, et al. Experimental study of the effect of a slow-cooling heat treatment on the mechanical properties of high strength steels [J]. Constr. Build. Mater., 2020, 241: 118020
|
| [11] |
Yang B, Liu B X, Fan K Y, et al. Obvious different formability and mechanical properties of warm caliber rolling Q345 steel with normalized and tempered states [J]. Mater. Sci. Eng., 2023, 887A: 145765
|
| [12] |
Wang S T, Yang S W, Gao K W, et al. Corrosion behavior and corrosion products of a low-alloy weathering steel in Qingdao and Wanning [J]. Int. J. Miner. Metall. Mater., 2009, 16(1): 58
|
| [13] |
Zhao Y J, Ren X P, Yang W C, et al. Design of a low-alloy high-strength and high-toughness martensitic steel [J]. Int. J. Miner. Metall. Mater., 2013, 20(8): 733
|
| [14] |
Krauss G. Tempering of lath martensite in low and medium carbon steels: assessment and challenges [J]. Steel Res. Int., 2017, 88(10): 1700038
|
| [15] |
Qi K L, Hu D J, Gao C, et al. Notch tensile properties prediction of low-alloy steel processed by different tempering temperatures [J]. Chin. J. Mater. Res., 2024, 38(3): 197
|
| [15] |
齐恺力, 胡德江, 高 崇 等. 不同温度回火低合金钢缺口拉伸性能的预测 [J]. 材料研究学报, 2024, 38(3): 197
|
| [16] |
Tang C J, Liu S L, Shang C J. Micromechanical behavior and failure mechanism of F/B multi-phase high performance steel [J]. J. Iron Steel Res. Int., 2016, 23(5): 489
|
| [17] |
Kim Y M, Kim S K, Kim N J. Simple method for tailoring the optimum microstructures of high-strength low-alloyed steels by the use of constitutive equation [J]. Mater. Sci. Eng., 2019, 743A: 138
|
| [18] |
Li X H, Liu Y C, Gan K F, et al. Acquiring a low yield ratio well synchronized with enhanced strength of HSLA pipeline steels through adjusting multiple-phase microstructures [J]. Mater. Sci. Eng., 2020, 785A: 139350
|
| [19] |
Li W S, Gao H Y, Li Z Y, et al. Effect of lower bainite/martensite/retained austenite triplex microstructure on the mechanical properties of a low-carbon steel with quenching and partitioning process [J]. Int. J. Miner. Metall. Mater., 2016, 23(3): 303
|
| [20] |
Xie H, Du L X, Hu J, et al. Microstructure and mechanical properties of a novel 1000MPa grade TMCP low carbon microalloyed steel with combination of high strength and excellent toughness [J]. Mater. Sci. Eng., 2014, 612A: 123
|
| [21] |
Jiang J, Bao W, Peng Z Y, et al. Experimental investigation on mechanical behaviours of TMCP high strength steel [J]. Constr. Build. Mater., 2019, 200: 664
|
| [22] |
Parthiban R, Chowdhury S G, Harikumar K C, et al. Evolution of microstructure and its influence on tensile properties in thermo-mechanically controlled processed (TMCP) quench and partition (Q&P) steel [J]. Mater. Sci. Eng., 2017, 705A: 376
|
| [23] |
Du X, Zhou L X, Li J, et al. Achieving high strength and low yield ratio by constructing the network martensite-ferrite heterogeneous in low carbon steels [J]. Mater. Sci. Eng., 2025, 920A: 147526
|
| [24] |
Xie Z J, Ren Y Q, Zhou W H, et al. Stability of retained austenite in multi-phase microstructure during austempering and its effect on the ductility of a low carbon steel [J]. Mater. Sci. Eng., 2014, 603A: 69
|
| [25] |
Xie Z J, Yuan S F, Zhou W H, et al. Stabilization of retained austenite by the two-step intercritical heat treatment and its effect on the toughness of a low alloyed steel [J]. Mater. Des., 2014, 59: 193
|
| [26] |
Wu X L, Zhu Y T. Heterogeneous materials: a new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5(8): 527
|
| [27] |
Gao B, Chen X F, Pan Z Y, et al. A high-strength heterogeneous structural dual-phase steel [J]. J. Mater. Sci., 2019, 54(19): 12898
|
| [28] |
Xie Z J, Shang C J, Wang X L, et al. Recent progress in third-generation low alloy steels developed under M3 microstructure control [J]. Int. J. Miner. Metall. Mater., 2020, 27(1): 1
|
| [29] |
Xie Z J, Han G, Yu Y S, et al. The determining role of intercritical annealing condition on retained austenite and mechanical properties of a low carbon steel: Experimental and theoretical analysis [J]. Mater. Charact., 2019, 153: 208
|
| [30] |
Yu Y S, Hu B, Gao M L, et al. Determining role of heterogeneous microstructure in lowering yield ratio and enhancing impact toughness in high-strength low-alloy steel [J]. Int. J. Miner. Metall. Mater., 2021, 28(5): 816
|
| [31] |
Zhang X G, Miyamoto G, Toji Y, et al. Orientation of austenite reverted from martensite in Fe-2Mn-1.5Si-0.3C alloy [J]. Acta Mater., 2018, 144: 601
|
| [32] |
Yuan S F, Xie Z J, Wang J L, et al. Effect of heterogeneous microstructure on refining austenite grain size in low alloy heavy-gage plate [J]. Metals, 2020, 10(1): 132
|
| [33] |
Calcagnotto M, Ponge D, Demir E, et al. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD [J]. Mater. Sci. Eng., 2010, 527A(10-11): 2738
|
| [34] |
Kim Y M, Kim S K, Lim Y J, et al. Effect of microstructure on the yield ratio and low temperature toughness of linepipe steels [J]. ISIJ Int., 2002, 42(12): 1571
|
| [35] |
Wang X L, Wang Z Q, Huang A R, et al. Contribution of grain boundary misorientation to intragranular globular austenite reversion and resultant in grain refinement in a high-strength low-alloy steel [J]. Mater. Charact., 2020, 169: 110634
|
| [36] |
Vítek V, Kroupa F. Dislocation theory of slip geometry and temperature dependence of flow stress in B.C.C. metals [J]. Phys. Stat. Sol., 1966, 18B(2): 703
|
| [37] |
Kocks U F, Mecking H. Physics and phenomenology of strain hardening: the FCC case [J]. Prog. Mater Sci., 2003, 48(3): 171
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|