Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (11): 801-812    DOI: 10.11901/1005.3093.2024.496
  研究论文 本期目录 | 过刊浏览 |
非均质组织对高强度风电钢拉伸性能的影响
陈子豪1,2, 高崇2, 庞建超2(), 麻衡3,4, 何康3,5, 李小武1, 李守新2, 张哲峰2
1.东北大学材料科学与工程学院 沈阳 110819
2.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
3.山钢股份莱芜分公司技术中心 济南 271104
4.北京科技大学冶金与生态工程学院 北京 100083
5.北京科技大学 钢铁共性技术协同创新中心 北京 100083
Effect of Different Heterogeneous Microstructures on Tensile Properties of a High Strength Wind Power Steel Q500MD
CHEN Zihao1,2, GAO Chong2, PANG Jianchao2(), MA Heng3,4, HE Kang3,5, LI Xiaowu1, LI Shouxin2, ZHANG Zhefeng2
1.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Laiwu Branch Technology Center, Shandong Iron and Steel Co. , Ltd. , Jinan 271104, China
4.School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
5.Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

陈子豪, 高崇, 庞建超, 麻衡, 何康, 李小武, 李守新, 张哲峰. 非均质组织对高强度风电钢拉伸性能的影响[J]. 材料研究学报, 2025, 39(11): 801-812.
Zihao CHEN, Chong GAO, Jianchao PANG, Heng MA, Kang HE, Xiaowu LI, Shouxin LI, Zhefeng ZHANG. Effect of Different Heterogeneous Microstructures on Tensile Properties of a High Strength Wind Power Steel Q500MD[J]. Chinese Journal of Materials Research, 2025, 39(11): 801-812.

全文: PDF(29253 KB)   HTML
摘要: 

对500 MPa级风电钢进行以临界退火为主的热处理并与淬火或回火相结合,即分别进行临界退火、淬火+临界退火与淬火+临界退火+回火均质化热处理,得到3种具有不同非均质组织的风电钢试样。使用扫描电镜和电子背散射衍射技术观察试样的微观组织,并对原始态等4组试样进行拉伸实验并观察拉伸断口,研究了非均质组织对高强度风电钢拉伸性能的影响。结果表明,非均质化热处理后试样的微观组织转变为软相临界铁素体和硬相马氏体的非均质组织,淬火+临界退火处理后试样的组织转变为临界铁素体、粒状马氏体及纤维状马氏体。试样中的非均质组织在临界退火过程中的非均匀形核使其产生了新的组织并使晶粒细化。这种非均质组织结构使这种高强度风电钢具有较低的屈强比和高塑性。与原始态组织相比,钢中的软相临界铁素体改变了试样在拉伸变形过程中初始屈服阈值和随后的加工硬化行为,使其具有较低的屈强比。不同非均质化热处理试样的组织演变和拉伸性能表明,临界退火处理后组织中的临界铁素体和马氏体使高强度风电钢的强度和塑性提高;在临界退火前加入淬火处理使微观组织中的晶粒更加细小而使其屈强比降低。

关键词 金属材料高强度风电钢临界退火非均质组织拉伸性能    
Abstract

The effect of different heterogeneous microstructures on the tensile properties of high-strength wind power steel Q500MD, a 500 MPa grade wind power steel was assessed. Hence, the as received steel is subjected to an intercritical annealing combined with quenching or tempering one, namely the following three heterogeneous heat treatments: intercritical annealing, quenching + intercritical annealing and quenching + intercritical annealing + tempering. Then the microstructure and tensile property of the acquired three type steels with different heterogeneous microstructures were examined viauniversal testing machine, scanning electron microscopy and electron backscatter diffraction. The results indicate that the as received steel presents typical thermo-mechanical control process (TMCP) heat treatment microstructure composed of a large amount of acicular ferrite and a small amount of martensite. After heterogeneous heat treatment, their microstructures transform into a heterogeneous microstructure of soft phase intercritical ferrite and hard phase martensite, and the martensite varies with different post heat treatment processes. Specifically, the steel microstructure turns into intercritical ferrite, granular martensite, and fibrous martensite after quenching and intercritical annealing. Due to the existence of heterogeneous nucleation in the intercritical annealing process, new microstructure can be generated and grain refinement can be achieved. The heterogeneous microstructure leads to a low yield ratio and high plasticity of high-strength wind power steels. Compared with the as received steel, the presence of the soft-phase intercritical ferrite alters the initial yield threshold and subsequent work hardening behavior of the steel during tensile deformation, resulting in low yield ratio. Based on the analysis of microstructure evolution and tensile properties of the steels prepared by different heterogeneous heat treatment, it can be concluded that the presence of intercritical ferrite and martensite in the microstructure after intercritical annealing can enhance the strength and plasticity of high-strength wind power steels. Furthermore, incorporating quenching prior to intercritical annealing yields a finer grain structure, thereby further reducing the yield ratio of high-strength wind power steels.

Key wordsmetallic materials    high strength wind power steel    intercritical annealing    heterogeneous microstructure    tensile property
收稿日期: 2024-12-15     
ZTFLH:  TG142.1  
基金资助:国家重点研发计划(2022YFB3708200)
通讯作者: 庞建超,副研究员,jcpang@imr.ac.cn,研究方向为材料疲劳与断裂
Corresponding author: PANG Jianchao, Tel: (024)83978879, E-mail: jcpang@imr.ac.cn
作者简介: 陈子豪,男,2000年生,硕士
图1  Q500MD钢的热处理工艺示意图
图2  拉伸试样的尺寸
图3  不同制度热处理后500 MPa级风电钢的微观组织
图4  不同制度热处理后500 MPa级风电钢的微观结构形态和边界分布的带衬度
图5  不同制度热处理后500 MPa级风电钢的KAM图
SampleYS / MPaUTS / MPaYRZ / %A / %Au / %
OS6227340.8547.2420.126.69
IA5248130.6460.0721.2710.27
QIA4718180.5872.8522.5211.28
QIAT5457220.7574.7923.7512.16
表1  不同制度热处理后500 MPa级风电钢的拉伸性能
图6  不同制度热处理后500 MPa级风电钢的拉伸工程应力-应变曲线
图7  不同制度热处理后500 MPa级风电钢的拉伸断口形貌
图8  基于EBSD结果不同制度热处理后500 MPa级风电钢的反极图
图9  非均质热处理后钢的微观组织结构变化
图10  不同制度热处理后500 MPa级风电钢的晶粒尺寸分布
图11  不同制度热处理后500 MPa级风电钢的拉伸性能与平均晶粒尺寸的关系
图12  不同制度热处理后500 MPa级风电钢的K-M曲线
图13  不同制度热处理后500 MPa级风电钢的拉伸性能
[1] Si J L, Ai L, Qiu C. Status and prospect of China's wind power development in 2023 [J]. Water Power, 2024, 50: 1
[1] 司俊龙, 艾 琳, 邱 辰. 2023年中国风电发展现状与展望 [J]. 水力发电, 2024, 50: 1
[2] Zhang B H. Market analysis and technology development of wind energy steel in China [J]. Spec. Steel Technol., 2012, 18(1): 6
[2] 张宝荭. 国内风电用钢市场分析与技术开发 [J]. 特钢技术, 2012, 18(1): 6
[3] Weng Y Q, Yang C F, Shang C J. State-of-the-art and development trends of HSLA steels in China [J]. Iron Steel, 2011, 46(9): 1
[3] 翁宇庆, 杨才福, 尚成嘉. 低合金钢在中国的发展现状与趋势 [J]. 钢铁, 2011, 46(9): 1
[4] Liu D S, Cheng B G, Chen Y Y. Strengthening and toughening of a heavy plate steel for shipbuilding with yield strength of approximately 690 MPa [J]. Metall. Mater. Trans., 2013, 44A(1): 440
[5] Dhua S K, Ray A, Sarma D S. Effect of tempering temperatures on the mechanical properties and microstructures of HSLA-100 type copper-bearing steels [J]. Mater. Sci. Eng., 2001, 318A(1-2): 197
[6] Yu Q B, Zhao X P, Sun B, et al. Yield-strength ratio of steel plate for high-rise building [J]. Iron Steel, 2007, 42(11): 74
[6] 于庆波, 赵贤平, 孙 斌 等. 高层建筑用钢板的屈强比 [J]. 钢铁, 2007, 42(11): 74
[7] Wang F, Shi G, Dai G X, et al. Research advance of influence of yield-to-tensile strength ratio on seismic behavior of steel frames [J]. J. Build. Struct., 2010, 31(S1): 18
[7] 王 飞, 施 刚, 戴国欣 等. 屈强比对钢框架抗震性能影响研究进展 [J]. 建筑结构学报, 2010, 31(S1): 18
[8] Kang J, Li C N, Li X L, et al. Effects of processing variables on microstructure and yield ratio of high strength constructional steels [J]. J. Iron Steel Res. Int., 2016, 23: 815
[9] Sohrabi M J, Mirzadeh H, Mehranpour M S, et al. Aging kinetics and mechanical properties of copper-bearing low-carbon HSLA-100 microalloyed steel [J]. Arch. Civ. Mech. Eng., 2019, 19(4): 1409
[10] Ding F X, Lan L F, Yu Y J, et al. Experimental study of the effect of a slow-cooling heat treatment on the mechanical properties of high strength steels [J]. Constr. Build. Mater., 2020, 241: 118020
[11] Yang B, Liu B X, Fan K Y, et al. Obvious different formability and mechanical properties of warm caliber rolling Q345 steel with normalized and tempered states [J]. Mater. Sci. Eng., 2023, 887A: 145765
[12] Wang S T, Yang S W, Gao K W, et al. Corrosion behavior and corrosion products of a low-alloy weathering steel in Qingdao and Wanning [J]. Int. J. Miner. Metall. Mater., 2009, 16(1): 58
[13] Zhao Y J, Ren X P, Yang W C, et al. Design of a low-alloy high-strength and high-toughness martensitic steel [J]. Int. J. Miner. Metall. Mater., 2013, 20(8): 733
[14] Krauss G. Tempering of lath martensite in low and medium carbon steels: assessment and challenges [J]. Steel Res. Int., 2017, 88(10): 1700038
[15] Qi K L, Hu D J, Gao C, et al. Notch tensile properties prediction of low-alloy steel processed by different tempering temperatures [J]. Chin. J. Mater. Res., 2024, 38(3): 197
[15] 齐恺力, 胡德江, 高 崇 等. 不同温度回火低合金钢缺口拉伸性能的预测 [J]. 材料研究学报, 2024, 38(3): 197
[16] Tang C J, Liu S L, Shang C J. Micromechanical behavior and failure mechanism of F/B multi-phase high performance steel [J]. J. Iron Steel Res. Int., 2016, 23(5): 489
[17] Kim Y M, Kim S K, Kim N J. Simple method for tailoring the optimum microstructures of high-strength low-alloyed steels by the use of constitutive equation [J]. Mater. Sci. Eng., 2019, 743A: 138
[18] Li X H, Liu Y C, Gan K F, et al. Acquiring a low yield ratio well synchronized with enhanced strength of HSLA pipeline steels through adjusting multiple-phase microstructures [J]. Mater. Sci. Eng., 2020, 785A: 139350
[19] Li W S, Gao H Y, Li Z Y, et al. Effect of lower bainite/martensite/retained austenite triplex microstructure on the mechanical properties of a low-carbon steel with quenching and partitioning process [J]. Int. J. Miner. Metall. Mater., 2016, 23(3): 303
[20] Xie H, Du L X, Hu J, et al. Microstructure and mechanical properties of a novel 1000MPa grade TMCP low carbon microalloyed steel with combination of high strength and excellent toughness [J]. Mater. Sci. Eng., 2014, 612A: 123
[21] Jiang J, Bao W, Peng Z Y, et al. Experimental investigation on mechanical behaviours of TMCP high strength steel [J]. Constr. Build. Mater., 2019, 200: 664
[22] Parthiban R, Chowdhury S G, Harikumar K C, et al. Evolution of microstructure and its influence on tensile properties in thermo-mechanically controlled processed (TMCP) quench and partition (Q&P) steel [J]. Mater. Sci. Eng., 2017, 705A: 376
[23] Du X, Zhou L X, Li J, et al. Achieving high strength and low yield ratio by constructing the network martensite-ferrite heterogeneous in low carbon steels [J]. Mater. Sci. Eng., 2025, 920A: 147526
[24] Xie Z J, Ren Y Q, Zhou W H, et al. Stability of retained austenite in multi-phase microstructure during austempering and its effect on the ductility of a low carbon steel [J]. Mater. Sci. Eng., 2014, 603A: 69
[25] Xie Z J, Yuan S F, Zhou W H, et al. Stabilization of retained austenite by the two-step intercritical heat treatment and its effect on the toughness of a low alloyed steel [J]. Mater. Des., 2014, 59: 193
[26] Wu X L, Zhu Y T. Heterogeneous materials: a new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5(8): 527
[27] Gao B, Chen X F, Pan Z Y, et al. A high-strength heterogeneous structural dual-phase steel [J]. J. Mater. Sci., 2019, 54(19): 12898
[28] Xie Z J, Shang C J, Wang X L, et al. Recent progress in third-generation low alloy steels developed under M3 microstructure control [J]. Int. J. Miner. Metall. Mater., 2020, 27(1): 1
[29] Xie Z J, Han G, Yu Y S, et al. The determining role of intercritical annealing condition on retained austenite and mechanical properties of a low carbon steel: Experimental and theoretical analysis [J]. Mater. Charact., 2019, 153: 208
[30] Yu Y S, Hu B, Gao M L, et al. Determining role of heterogeneous microstructure in lowering yield ratio and enhancing impact toughness in high-strength low-alloy steel [J]. Int. J. Miner. Metall. Mater., 2021, 28(5): 816
[31] Zhang X G, Miyamoto G, Toji Y, et al. Orientation of austenite reverted from martensite in Fe-2Mn-1.5Si-0.3C alloy [J]. Acta Mater., 2018, 144: 601
[32] Yuan S F, Xie Z J, Wang J L, et al. Effect of heterogeneous microstructure on refining austenite grain size in low alloy heavy-gage plate [J]. Metals, 2020, 10(1): 132
[33] Calcagnotto M, Ponge D, Demir E, et al. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD [J]. Mater. Sci. Eng., 2010, 527A(10-11): 2738
[34] Kim Y M, Kim S K, Lim Y J, et al. Effect of microstructure on the yield ratio and low temperature toughness of linepipe steels [J]. ISIJ Int., 2002, 42(12): 1571
[35] Wang X L, Wang Z Q, Huang A R, et al. Contribution of grain boundary misorientation to intragranular globular austenite reversion and resultant in grain refinement in a high-strength low-alloy steel [J]. Mater. Charact., 2020, 169: 110634
[36] Vítek V, Kroupa F. Dislocation theory of slip geometry and temperature dependence of flow stress in B.C.C. metals [J]. Phys. Stat. Sol., 1966, 18B(2): 703
[37] Kocks U F, Mecking H. Physics and phenomenology of strain hardening: the FCC case [J]. Prog. Mater Sci., 2003, 48(3): 171
[1] 杨景清, 董文超, 陆善平. δ-铁素体含量对高SiN奥氏体不锈钢焊缝性能的影响[J]. 材料研究学报, 2025, 39(9): 641-649.
[2] 詹杰, 陈小江, 邹之利, 苏兴东, 谢世宇, 江亮, 王金铃, 王烈林. 纳米Ag0@ACF材料的制备及其对气态碘的吸附性能[J]. 材料研究学报, 2025, 39(9): 673-682.
[3] 施渊吉, 程诚, 张海涛, 胡道春, 陈晶晶, 黎军顽. β-SiC半导体器件在滑动摩擦中材料去除行为的纳观分析[J]. 材料研究学报, 2025, 39(9): 701-711.
[4] 周影影, 张瑛嫺, 淡卓娅, 杜旭, 杜浩楠, 甄恩远, 罗发. 掺杂LaYFeO3 陶瓷吸波性能的影响[J]. 材料研究学报, 2025, 39(8): 561-568.
[5] 王铭宇, 李述军, 和正华, 唐明德, 张思倩, 张浩宇, 周舸, 陈立佳. 激光功率和扫描速度对SLM制备Ti5553合金性能的影响[J]. 材料研究学报, 2025, 39(8): 583-591.
[6] 耿瑞文, 杨志豇, 杨蔚华, 谢启明, 游津京, 李立军, 吴海华. 6H-SiC纳米磨削亚表面损伤机理的分子动力学研究[J]. 材料研究学报, 2025, 39(8): 603-611.
[7] 陆通, 王亚娜, 张超, 雷芃, 张鸿荣, 黄光伟, 郑立允. BN掺杂对热变形钕铁硼磁体性能的影响[J]. 材料研究学报, 2025, 39(8): 612-618.
[8] 张伟, 张兵, 周军, 刘跃, 王旭峰, 杨锋, 张海芹. 冷轧 Q 值对TA18管材塑性变形织构演变的影响[J]. 材料研究学报, 2025, 39(8): 619-631.
[9] 谭德新, 陈诗慧, 罗小丽, 宁小媚, 王艳丽. 富缺陷Pd纳米片的合成和对甘油的电催化氧化性能[J]. 材料研究学报, 2025, 39(8): 632-640.
[10] 张宁, 王耀奇, 杨毅, 慕延宏, 李震, 陈志勇. Ti65钛合金的超塑变形和微观组织演变[J]. 材料研究学报, 2025, 39(7): 489-498.
[11] 刘晶, 李云杰, 秦煜, 李琳琳. GCr15轴承钢中渗碳体粒径的调控对其硬度的影响[J]. 材料研究学报, 2025, 39(7): 521-532.
[12] 韩杨燚, 张腾昊, 张可, 赵时雨, 汪创伟, 余强, 李景辉, 孙新军. 终冷温度对Ti-V-Mo复合微合金钢析出相、组织和硬度的影响[J]. 材料研究学报, 2025, 39(7): 533-541.
[13] 刘志华, 王明月, 李易娟, 丘一帆, 李翔, 苏伟钊. 1T/2H O-MoS2@S-pCN催化剂的制备和性能[J]. 材料研究学报, 2025, 39(7): 551-560.
[14] 杨亮, 揣荣岩, 薛丹, 刘芳, 刘昆霖, 刘畅, 蔡桂喜. SUS301L不锈钢电阻点焊接头的微观组织和力学性能研究[J]. 材料研究学报, 2025, 39(6): 435-442.
[15] 姜爱龙, 谭炳治, 庞建超, 石锋, 张允继, 邹成路, 李守新, 伍启华, 李小武, 张哲峰. 蠕墨铸铁RuT300RuT450的低周疲劳性能和损伤机制[J]. 材料研究学报, 2025, 39(6): 443-454.