Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (5): 329-342    DOI: 10.11901/1005.3093.2024.085
  研究论文 本期目录 | 过刊浏览 |
在模拟太阳光下溶剂热时长对MIL-88A(Fe)活化过一硫酸盐降解罗丹明B催化性能的影响
任学昌(), 安菊, 付宁, 姚小庆, 杨镇瑜, 陈泓锦
兰州交通大学环境与市政工程学院 兰州 730070
Degradation of RhB by MIL-88A (Fe) Activated Persulfate under Simulated Sunlight: Effect of Solvent-thermal Duration on Catalytic Performance
REN Xuechang(), AN Ju, FU Ning, YAO Xiaoqing, YANG Zhenyu, CHEN Hongjin
School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
引用本文:

任学昌, 安菊, 付宁, 姚小庆, 杨镇瑜, 陈泓锦. 在模拟太阳光下溶剂热时长对MIL-88A(Fe)活化过一硫酸盐降解罗丹明B催化性能的影响[J]. 材料研究学报, 2025, 39(5): 329-342.
Xuechang REN, Ju AN, Ning FU, Xiaoqing YAO, Zhenyu YANG, Hongjin CHEN. Degradation of RhB by MIL-88A (Fe) Activated Persulfate under Simulated Sunlight: Effect of Solvent-thermal Duration on Catalytic Performance[J]. Chinese Journal of Materials Research, 2025, 39(5): 329-342.

全文: PDF(11880 KB)   HTML
摘要: 

用一步溶剂热法制备不同溶剂热时长的MIL-88 A(Fe),使用SEM、XRD、FT-IR、BET、UV-vis DRS、XPS和EIS等手段对其进行表征。在模拟太阳光(500 W氙灯)下用MIL-88A(Fe)活化过一硫酸盐降解罗丹明B,研究溶剂热时长对其催化性能的影响并分析其反应机理。结果表明,溶剂热时长为12 h的催化剂M-12晶体的横纵比最大(3.33),其表面铁离子和有机配体连接处有较多的缺陷和不饱和配位位点,光电流响应最强,光生电子-空穴分离效率和电导率最高、电子转移电阻最低和光催化活性最佳。M-12/PMS/light体系对RhB (20 mg/L)的60 min降解率达到99.33%。这个体系pH值的适应范围较广、无机阴离子的影响较低、OH、SO4·-和h+是主要的活性自由基,1O2O2-有辅助降解RhB的作用。活性自由基来源于UV-Vis直接活化、电子转移直接活化和电子转移间接活化。M-12/PMS/Light体系对RhB去除率高于90%,其结构和催化性能稳定且可重复使用。

关键词 金属材料MIL-88A (Fe)溶剂热时长光芬顿表征分析RhB    
Abstract

Six different MIL-88A (Fe) samples were synthesized by one-step solvothermal method for different reaction times (named M-4, M-8, M-12, M-16, M-20, M-24) and characterized by SEM, XRD, FT-IR, BET, UV-vis DRS, XPS and EIS. A variety of MIL-88A (Fe) catalytically activated peroxymonosulfate was used to degrade Rhodamine B solution under xenon lamp irradiation (500 W), as a simulated sunlight. Meanwhile the effect of solvent heating time on its catalytic performance was studied, and the reaction mechanism and influencing factors were analyzed. The results show that the variation of crystal morphology follows a process of “nucleation-aggregation-solution-recrystallization” with the increase of solvothermal time. The morphology of MIL-88A (Fe) is greatly affected by different solvent thermal duration. Fe―O clusters are formed between inorganic metal and carboxyl group of fumaric acid, and the REDOX conversion between Fe3+ and Fe2+ is active. The catalyst M-12 crystal prepared with a solvothermal duration of 12 h has the largest aspect ratio (3.33). There are more defects and unsaturated coordination sites at the junction of iron ions and organic ligands on its surface, and it has the strongest photocurrent response, the largest photogenerated electron-hole separation efficiency, the lowest electron transfer resistance and the highest conductivity, therewith, the best photocatalytic activity. In the M-12/PMS/artificial sun light system, the degradation rate of RhB (20 mg/L) reached 99.33% within 60 min, the system has a wide pH adaptation range and low influence of inorganic anions, moreover, ·OH, SO4- and h+ are the main active free radicals, while 1O2 and ·O2- play a role in assisting RhB degradation. The active free radicals are derived from three pathways: direct activation, direct activation by electron transfer and indirect activation by electron transfer. In the cyclic experiments, M-12/PMS/Light system has maintained an efficient removal rate of more than 90% for RhB, the sample structure and catalytic performance are stable, and the reusability is high, which has a good application prospect.

Key wordsmetallic material    MIL-88A (Fe)    solvothermal duration    photo-Fenton    characterization analysis    RhB
收稿日期: 2024-02-22     
ZTFLH:  TB31  
基金资助:兰州交通大学青年学者科学基金(2022044)
通讯作者: 任学昌,教授,rxchang1698@hotmail.com,研究方向为水处理高级氧化技术
Corresponding author: REN Xuechang, Tel: 17693109113, E-mail: rxchang1698@hot mail.com
作者简介: 任学昌,男,1970年生,博士
图1  不同溶剂热时长MIL-88A(Fe)的制备过程示意
图2  不同溶剂热时长MIL-88A(Fe)的SEM照片(a) M-4; (b) M-8; (c) M-12; (d) M-16; (e) M-20; (f) M-24
图3  不同溶剂热时长MIL-88A(Fe)的XRD谱
图4  不同溶剂热时长MIL-88A(Fe)的FT-IR谱
图5  不同溶剂热时长MIL-88A(Fe)的N2吸脱附等温线和孔径分布
CatalystSBET / m2·g-1Vp / cm3·g-1Dp / nmUnit reaction rate constant / min-1·m-2
M-4153.670.1141.360.364 × 10-3
M-8140.130.0961.490.441 × 10-3
M-1292.800.0721.560.938 × 10-3
M-16126.280.0791.250.657 × 10-3
M-20152.020.0861.130.387 × 10-3
M-24226.320.1621.440.164 × 10-3
表1  不同溶剂热时长MIL-88A(Fe)的比表面积、孔体积、孔径及单位反应速率常数
图6  不同溶剂热时长MIL-88A(Fe)的UV-Vis DRS谱
图7  反应前后M-12的XPS谱
图8  不同溶剂热时长MIL-88A(Fe)的光电流瞬态响应图及EIS谱
图9  在有光照、无光照和有光照并添加PMS条件下不同溶剂热时长的MIL-88A(Fe)对RhB的降解
图10  M-12投加量对RhB降解的影响
图11  PMS投加量对RhB降解的影响
图12  pH值对RhB降解的影响
图13  无机阴离子对RhB降解的影响
图14  M-12样品循环稳定性
图15  捕获活性物种的实验
图16  M-12/PMS/light体系降解RhB机理的示意图
1 Sharma A, Ahmad J, Flora S J S. Application of advanced oxidation processes and toxicity assessment of transformation products [J]. Environ. Res., 2018, 167: 223
doi: S0013-9351(18)30374-8 pmid: 30055452
2 Mahbub P, Duke M. Scalability of advanced oxidation processes (AOPs) in industrial applications: a review [J]. J. Environ. Manage., 2023, 345: 118861
3 Arifin M N, Jusoh R, Abdullah H, et al. Recent advances in advanced oxidation processes (AOPs) for the treatment of nitro- and alkyl-phenolic compounds [J]. Environ. Res., 2023, 229: 115936
4 M'Arimi M M, Mecha C A, Kiprop A K, et al. Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: review [J]. Renew. Sustain. Energy Rev., 2020, 121: 109669
5 Savia F, Adesina A O, Carena L, et al. Assessment of Fenton systems based on metabisulphite as a low-cost alternative to hydrogen peroxide [J]. J. Environ. Chem. Eng., 2023, 11(5): 110707
6 Roy K, Moholkar V S. Sulfadiazine degradation using hybrid AOP of heterogeneous Fenton/persulfate system coupled with hydrodynamic cavitation [J]. Chem. Eng. J., 2020, 386: 121294
7 Dong C C, Fang W Z, Yi Q Y, et al. A comprehensive review on reactive oxygen species (ROS) in advanced oxidation processes (AOPs) [J]. Chemosphere, 2022, 308: 136205
8 Lai L D, He Y L, Zhou H Y, et al. Critical review of natural iron-based minerals used as heterogeneous catalysts in peroxide activation processes: characteristics, applications and mechanisms [J]. J. Hazard. Mater., 2021, 416: 125809
9 He J, Yang X F, Men B, et al. Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: a review [J]. J. Environ. Sci., 2016, 39: 97
10 Li Z Z, Shen C S, Liu Y B, et al. Carbon nanotube filter functionalized with iron oxychloride for flow-through electro-Fenton [J]. Appl. Catal., 2020, 260B: 118204
11 Wang N N, Zheng T, Zhang G S, et al. A review on Fenton-like processes for organic wastewater treatment [J]. J. Environ. Chem. Eng., 2016, 4(1): 762
12 Wang X, Li Y X, Yi X H, et al. Photocatalytic Cr(VI) elimination over BUC-21/N-K2Ti4O9 composites: big differences in performance resulting from small differences in composition [J]. Chin. J. Catal., 2021, 42(2): 259
doi: 10.1016/S1872-2067(20)63629-4
13 Assen A H, Belmabkhout Y, Adil K, et al. Advances on CO2 storage. Synthetic porous solids, mineralization and alternative solutions [J]. Chem. Eng. J., 2021, 419: 129569
14 Langmi H W, Ren J W, North B, et al. Hydrogen storage in metal-organic frameworks: a review [J]. Electrochim. Acta, 2014, 128: 368
15 Dai X, Cao Y, Shi X W, et al. The PLA/ZIF-8 nanocomposite membranes: the diameter and surface roughness adjustment by ZIF-8 nanoparticles, high wettability, improved mechanical property, and efficient oil/water separation [J]. Adv. Mater. Interfaces, 2016, 3: 1600725
16 Yang C, Zhu Y M, Wang J, et al. A novel granular MOF composite with dense and ordered MIL-100(Fe) nanoparticles grown on porous alumina: green synthesis and enhanced adsorption of tetracycline hydrochloride [J]. Chem. Eng. J., 2021, 426: 131724
17 Ren X C, Yang Z Y, Feng H, et al. Influence of preparation process parameters on relative amount of two-phase 1T/2H and performance of WS2 [J]. Chin. J. Mater. Res., 2024, 38(10): 791
17 任学昌, 杨镇瑜, 冯 浩 等. 制备条件对WS2中1T/2H相的影响 [J]. 材料研究学报, 2024, 38(10): 791
doi: 10.11901/1005.3093.2023.488
18 Serre C, Mellot-Draznieks C, Surblé S, et al. Role of solvent-host interactions that lead to very large swelling of hybrid frameworks [J]. Science, 2007, 315: 1828
pmid: 17395825
19 Wang F X, Wang C C. Fabrication approaches and organic pollutants degradation performances via advanced oxidation processes of MIL-88A(Fe) and its composites [J]. Res. Environ. Sci., 2021, 34(12): 2924
19 王茀学, 王崇臣. 金属-有机骨架MIL-88A(Fe)及其复合物的合成与高级氧化降解水体有机污染物的研究进展 [J]. 环境科学研究, 2021, 34(12): 2924
20 Tan S R, Yao C, Liu Z C, et al. Fabrication of metal organic framework Zn-BTC/rGO nanocomposites with different morphologies and their supercapacitor performance [J]. Chin. J. Mater. Res., 2024, 38(8): 576
20 谭上荣, 姚 焯, 刘泽辰 等. 金属有机骨架Zn-BTC/rGO复合材料的制备和性能 [J]. 材料研究学报, 2024, 38(8): 576
doi: 10.11901/1005.3093.2023.446
21 Wang J L, Wang S Z. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants [J]. Chem. Eng. J., 2018, 334: 1502
22 Yi X H, Wang C C. Elimination of emerging organic contaminants in wastewater by advanced oxidation process over iron-based MOFs and their composites [J]. Prog. Chem., 2021, 33(3): 471
doi: 10.7536/PC200562
22 衣晓虹, 王崇臣. 铁基金属-有机骨架及其复合物高级氧化降解水中新兴有机污染物 [J]. 化学进展, 2021, 33(3): 471
doi: 10.7536/PC200562
23 Gao C, Chen S, Quan X, et al. Enhanced Fenton-like catalysis by iron-based metal organic frameworks for degradation of organic pollutants [J]. J. Catal., 2017, 356: 125
24 Wang S Y, An W J, Lu J R, et al. A Cu/CuFe2O4-OVs two-electron centre-based synergistic photocatalysis-Fenton system for efficient degradation of organic pollutants [J]. Chem. Eng. J., 2022, 441: 135944
25 Chen G Y, Yu Y, Liang L, et al. Remediation of antibiotic wastewater by coupled photocatalytic and persulfate oxidation system: a critical review [J]. J. Hazard. Mater., 2021, 408: 124461
26 O’Keeffe M. Design of MOFs and intellectual content in reticular chemistry: a personal view [J]. Chem. Soc. Rev., 2009, 38(5): 1215
doi: 10.1039/b802802h pmid: 19384432
27 Bagherzadeh E, Zebarjad S M, Madaah Hosseini H R, et al. Interplay between morphology and band gap energy in Fe-MIL-88A prepared via a high temperature surfactant-assisted solvothermal method [J]. Mater. Chem. Phys., 2022, 277: 125536
28 Wang H Y, Zhang C, Zheng L J, et al. Activation of peroxydisulfate by MIL-88A(Fe) under visible light toward tetracycline degradation: effect of synthesis temperature on catalytic performance [J]. J. Solid State Chem., 2023, 323: 124051
29 Zhao S Y, Li Y H, Wang M Z, et al. Preparation of MIL-88A micro/nanocrystals with different morphologies in different solvents for efficient removal of Congo red from water: synthesis, characterization, and adsorption mechanisms [J]. Micropor. Mesopor. Mater., 2022, 345: 112241
30 Duan J G, Li Y S, Pan Y C, et al. Metal-organic framework nanosheets: an emerging family of multifunctional 2D materials [J]. Coord. Chem. Rev., 2019, 395: 25
31 Dhakshinamoorthy A, Asiri A M, Garcia H. 2D metal-organic frameworks as multifunctional materials in heterogeneous catalysis and electro/photocatalysis [J]. Adv. Mater., 2019, 31(41): 1900617
32 Viswanathan V P, Mathew S V, Dubal D P, et al. Exploring the effect of morphologies of Fe(III) metal-organic framework MIL-88A(Fe) on the photocatalytic degradation of rhodamine B [J]. ChemistrySelect, 2020, 5: 7534
doi: 10.1002/slct.202001670
33 Liao X Y, Wang F, Wang F, et al. Synthesis of (100) surface oriented MIL-88A-Fe with rod-like structure and its enhanced fenton-like performance for phenol removal [J]. Appl. Catal., 2019, 259B: 118064
34 Chen D D, Yi X H, Ling L, et al. Photocatalytic Cr(VI) sequestration and photo-Fenton bisphenol A decomposition over white light responsive PANI/MIL-88A(Fe) [J]. Appl. Organomet. Chem., 2020, 34: e5795
35 Zhang S P, Zhuo Y F, Ezugwu C I, et al. Synergetic molecular oxygen activation and catalytic oxidation of formaldehyde over defective MIL-88B(Fe) nanorods at room temperature [J]. Environ. Sci. Technol., 2021, 55: 8341
36 Huo W T, Wang M L, Wei H, et al. Rational construction of visible-light-driven MIL-88A(Fe)@PMo12 heterojunction with S-scheme electron transfer pathway to activate peroxymonosulfate for degradation of organic pollutants [J]. Appl. Surf. Sci., 2023, 639: 158199
37 Jing J J, Liu Y, Jing L Q, et al. A novel Bi3.64Mo0.36O6.55/MIL-88A(Fe) nanorod composite material for enhancing photocatalytic activity in photo-Fenton system [J]. Colloids Surf., 2022, 654A: 130116
38 Tan Q Y, Yu Z X, Xiang Q C, et al. Photo-Fenton properties of MIL-88A(Fe)/Ti3C2 MXene with tunable active crystal facets: universal for degradation of common pollutants in wastewater [J]. Process Saf. Environ. Prot., 2023, 179: 405
39 Zhang Y, Zhou J B, Chen X, et al. Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe-based MOFs: synergistic effect and degradation pathway [J]. Chem. Eng. J., 2019, 369: 745
doi: 10.1016/j.cej.2019.03.108
40 Yang H C, Zhang S W, Cao R Y, et al. Constructing the novel ultrafine amorphous iron oxyhydroxide/g-C3N4 nanosheets heterojunctions for highly improved photocatalytic performance [J]. Sci. Rep., 2017, 7: 8686
41 Lin K Y A, Chang H A, Hsu C J. Iron-based metal organic framework, MIL-88A, as a heterogeneous persulfate catalyst for decolorization of Rhodamine B in water [J]. RSC Adv., 2015, 5: 32520
42 Gao Y W, Li S M, Li Y X, et al. Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate [J]. Appl. Catal., 2017, 202B: 165
43 Liu N, Huang W Y, Zhang X D, et al. Ultrathin graphene oxide encapsulated in uniform MIL-88A(Fe) for enhanced visible light-driven photodegradation of RhB [J]. Appl. Catal., 2018, 221B: 119
44 Huang W Y, Jing C W, Zhang X D, et al. Integration of plasmonic effect into spindle-shaped MIL-88A(Fe): steering charge flow for enhanced visible-light photocatalytic degradation of ibuprofen [J]. Chem. Eng. J., 2018, 349: 603
45 Roy D, Neogi S, De S. Mechanistic investigation of photocatalytic degradation of Bisphenol-A using MIL-88A(Fe)/MoS2 Z-scheme heterojunction composite assisted peroxymonosulfate activation [J]. Chem. Eng. J., 2022, 428: 131028
46 Ding S Y, Ren X C, Chen R H, et al. Efficient degradation of Phenol by 1T/2H-MoS2/CuFe2O4 activated peroxymonosulfate and mechanism research [J]. Appl. Surf. Sci., 2023, 612: 155931
47 Zhang Y J. The study on refractory organic pollutants degradation by photocatalytic activated peroxymonosulfate using graphite phase carbon nitride - based material [D]. Lanzhou: Lanzhou Jiaotong University, 2022
47 张玉杰. 石墨相氮化碳基材料光催化活化过一硫酸盐去除难降解有机污染物的研究 [D]. 兰州: 兰州交通大学, 2022
48 Lai L D, Ji H D, Zhang H, et al. Activation of peroxydisulfate by V-Fe concentrate ore for enhanced degradation of carbamazepine: surface ≡V(III) and ≡V(IV) as electron donors promoted the regeneration of ≡Fe(II) [J]. Appl. Catal., 2021, 282B: 119559
49 Xu Y, Ai J, Zhang H. The mechanism of degradation of bisphenol A using the magnetically separable CuFe2O4/peroxymonosulfate heterogeneous oxidation process [J]. J. Hazard. Mater., 2016, 309: 87
doi: 10.1016/j.jhazmat.2016.01.023 pmid: 26875144
50 Li H R, Tian J Y, Xiao F, et al. Structure-dependent catalysis of cuprous oxides in peroxymonosulfate activation via nonradical pathway with a high oxidation capacity [J]. J. Hazard. Mater., 2020, 385: 121518
51 Ding Q, Zou X J, Ke J, et al. Enhanced artificial nitrogen fixation efficiency induced by construction of ternary TiO2/MIL-88A(Fe)/g-C3N4 Z-scheme heterojunction [J]. J. Colloid Interface Sci., 2023, 649: 148
[1] 李海斌, 徐惠婷, 唐伟, 吕海波, 帅美荣. 热轧碳钢/不锈钢复合板结合界面电解腐蚀的毛细效应[J]. 材料研究学报, 2025, 39(5): 362-370.
[2] 邱玮, 李玉林, 闫瑞, 李雅文, 陈维, 甘浪, 任延杰, 陈荐. Al对镁空气电池用挤压态Mg-Al-Ca-Mn合金阳极腐蚀和放电性能的影响[J]. 材料研究学报, 2025, 39(5): 389-400.
[3] 吴玉程, 左彤, 谭晓月, 朱晓勇, 刘家琴. 第一壁自钝化W-Cr-Zr合金的氧化行为和氧化层结构[J]. 材料研究学报, 2025, 39(5): 343-352.
[4] 符纯国, 徐世伟, 杨晓益, 李萌蘖. 焊接热源模式对5083-H111铝合金接头性能的影响[J]. 材料研究学报, 2025, 39(4): 305-313.
[5] 陈室雨, 李卫, 旷海燕, 高绍巍, 庞东方. 一种稀土Lu3+ 掺杂无铅压电陶瓷的介电、铁电和压电性能[J]. 材料研究学报, 2025, 39(4): 272-280.
[6] 胥聪敏, 孙姝雯, 朱文胜, 陈志强, 李城臣. 三元复配杀菌剂对P110钢腐蚀行为的影响[J]. 材料研究学报, 2025, 39(4): 281-288.
[7] 胡彭钦, 王栋, 卢玉章, 张健. 热工艺对一种镍基单晶高温合金蠕变性能的影响[J]. 材料研究学报, 2025, 39(3): 161-171.
[8] 胡明, 张新全, 李伟强, 杨晓康, 黄金湖, 雷晓飞, 邱建科, 董利民. FeCu的含量对TC10钛合金棒材力学性能的影响[J]. 材料研究学报, 2025, 39(3): 217-224.
[9] 于兴福, 西克宇, 张宏伟, 王全振, 郝天赐, 郑冬月, 苏勇. 离子渗氮后的扩散处理对7Cr7Mo2V2Si冷作模具钢性能的影响[J]. 材料研究学报, 2025, 39(3): 225-232.
[10] 钟伟杰, 焦东玲, 刘仲武, 刘娜, 许文勇, 李周, 张国庆. 热等静压态镍基高温合金的高温氧化[J]. 材料研究学报, 2025, 39(3): 172-184.
[11] 冉子祚, 张爽, 苏兆翼, 王阳, 邹存磊, 赵亚军, 王增睿, 姜薇薇, 董晨希, 董闯. 基于团簇式的316不锈钢成分优化及其实验验证[J]. 材料研究学报, 2025, 39(3): 207-216.
[12] 张慧芳, 吴浩, 肖传民, 李奇, 谢君, 李金国, 王振江, 于金江. 热处理对一种 γʹ 沉淀强化钴基高温合金拉伸性能的影响[J]. 材料研究学报, 2025, 39(3): 198-206.
[13] 胥聪敏, 李雪丽, 付安庆, 孙姝雯, 陈志强, 李城臣. 复配杀菌缓蚀剂对N80钢在SRB环境中微生物腐蚀行为的影响[J]. 材料研究学报, 2025, 39(2): 145-152.
[14] 吴晓祺, 万红江, 明洪亮, 王俭秋, 柯伟, 韩恩厚. 原位小冲头压缩速率对X65管线钢氢脆敏感性的影响[J]. 材料研究学报, 2025, 39(2): 92-102.
[15] 马修戈, 吴庆辉, 庞建超, 刘增乾, 李守新, 骆凯伦, 张哲峰. 晶界取向差对双晶高温合金常温和高温拉伸性能的影响[J]. 材料研究学报, 2025, 39(2): 81-91.