Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (7): 529-536    DOI: 10.11901/1005.3093.2023.352
  研究论文 本期目录 | 过刊浏览 |
NO共掺杂碳电极材料的制备及其组装的超级电容器的性能
原新忠1, 王存景2(), 姚鹏2, 李琼3, 马志华2, 李鹏发2
1.新乡学院医学院 新乡 453003
2.新乡学院化学与材料工程学院 新乡 453003
3.新乡学院药学院 新乡 453003
Preparation of N and O Co-doped Carbon Materials by Salt Sealing Method for Electrode of Supercapacitors
YUAN Xinzhong1, WANG Cunjing2(), YAO Peng2, LI Qiong3, MA Zhihua2, LI Pengfa2
1.Medical college, Xinxiang University, Xinxiang 453003, China
2.School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, China
3.School of Pharmacy of Xinxiang University, Xinxiang University, Xinxiang 453003, China
引用本文:

原新忠, 王存景, 姚鹏, 李琼, 马志华, 李鹏发. NO共掺杂碳电极材料的制备及其组装的超级电容器的性能[J]. 材料研究学报, 2024, 38(7): 529-536.
Xinzhong YUAN, Cunjing WANG, Peng YAO, Qiong LI, Zhihua MA, Pengfa LI. Preparation of N and O Co-doped Carbon Materials by Salt Sealing Method for Electrode of Supercapacitors[J]. Chinese Journal of Materials Research, 2024, 38(7): 529-536.

全文: PDF(10422 KB)   HTML
摘要: 

用盐密封法高温热解2-甲基咪唑锌盐(ZIF-8)制备了N、O共掺杂碳电极材料,这种碳材料具有开口空心结构,其中的介孔和微孔的分布适宜且比表面积(1589 m2·g-1)较高。N和O异质原子的掺杂改善了材料的浸润性,开口空心结构便于电解质离子从内外表面同时向电极材料内部扩散,使更多的溶剂化离子在电极材料的孔内进行吸脱附反应,增大了电极材料的有效比表面积和使更多的N、O异质原子活性位参与氧化还原反应,构成了更高的法拉第电容。用这种电极材料组装的对称超级电容器功率密度为250 W·kg-1时其能量密度为11 Wh·kg-1

关键词 无机非金属材料超级电容器盐密封法开口空心碳材料    
Abstract

N and O co-doped carbon electrode materials were synthesized by pyrolysis of Zeolitic Imidazolate Framework-8 (ZIF-8) at high temperature in air using a salt-sealing technique, aiming to solve the issue related with the low energy density of conventional carbon materials for supercapacitors. Compared with the conventional carbon materials prepared by direct pyrolysis of ZIF-8 in nitrogen atmosphere, the novel carbon materials prepared by this proposed technique have an open hollow structure with appropriate distribution of mesoporous and microporous, and higher specific surface area of 1589 m2·g-1. The co-doping of heteroatoms N and O can improve the wettability of the material, while the open hollow structure is conducive to the diffusion of the electrolyte ions from both internal and external surfaces to the interior of the electrode material. Therefore, more solvated ions are adsorbed and desorbed in the pores, and the effective specific surface area is increased for the electrode material, therewith, more active sites of heteroatoms N and O can participate in the redox reaction, introducing higher Faraday capacitance. As a matter of course, the symmetrical supercapacitor assembled with the novel electrode material shows an energy density of 11 Wh·kg-1 at power density of 250 W·kg-1.

Key wordsinorganic non-metallic materials    supercapacitors    salt-sealing technique    open hollow carbon materials
收稿日期: 2023-07-18     
ZTFLH:  O646  
基金资助:国家自然科学基金(51902278);国家自然科学基金(51871190);国家自然科学基金(51901200)
通讯作者: 王存景,副教授,wangcunjing@126.com,研究方向为电化学储能材料与器件
Corresponding author: WANG Cunjing, Tel: (0373)3682674,E-mail: wangcunjing@126.com
作者简介: 原新忠,男,1978年生
图1  ZIF-8、盐与ZIF-8的混合物和盐的TG和DSC图、A-ZC和N-ZC的XRD谱和Roman谱
图2  ZIF-8、IZC和AZC的SEM图像、AZC的TEM像、HRTEM图像、AZC的C、N和O的相应元素映射分析
图3  A-ZC和N-ZC的、XPS总谱、A-ZC的C1s谱、A-ZC的N1s谱、A-ZC和N-ZC的N2吸附/解吸等温线以及DFT的孔径分布
图4  A-ZC和N-ZC工作电极的CV曲线、GCD曲线、在不同电流密度下的比电容和EIS奈奎斯特图
图5  对称电容器在不同电流密度下的GCD曲线、比电容、Ragone图和电流密度为5 A·g-1时的循环稳定性
[1] Guo R N, Li T W, Wang D, et al. Research progress of MOF-derived nano-electrode materials for supercapacitors [J]. J. Synth. Crys., 2023, 52(11): 1922
[1] 郭容男, 李太文, 王 栋 等. 超级电容器用MOFs衍生纳米电极材料的研究进展 [J]. 人工晶体学报, 2023, 52(11): 1922
[2] Tian T, Lei S P, Yu T, et al. Research progress of carbon materials in flexible supercapacitors [J]. Chem. Indus. Eng. Prog., 2023, 42(2): 884
[2] 田 甜, 雷西萍, 于 婷 等. 碳材料在柔性超级电容器中的研究进展 [J]. 化工进展, 2023, 42(2): 884
[3] Song X L, Luo W J, Nan Y L. A review for synthesis and applications of carbon nanohorns [J]. Chin. J. Mater. Res., 2021, 35(6): 10
[3] 宋小龙, 骆伟静, 南艳丽. 碳纳米角的制备及其应用进展 [J]. 材料研究学报, 2021, 35(6): 10
[4] Zhang C X, Jiang Z Y, Dai Y M, et al. Preparation and supercapacitance of C-ZIF-8@AC composites electrode material [J]. Chin. J. Mater. Res., 2019(5): 9
[4] 张传香, 江中仪, 戴玉明 等. C-ZIF-8@AC复合电极材料的制备及超电容性能研究 [J]. 材料研究学报, 2019(5): 9
[5] Cao Z J, Li R Y, Xu P W, et al. Highly dispersed RuO2-biomass carbon composite made by immobilization of ruthenium and dissolution of coconut meat with octyl ammonium salicylate ionic liquid for high performance flexible supercapacitor [J]. J. Colloid Interface Sci., 2022, 606(1): 424
[6] Wang G, Lu Z L, Li Y, et al. Electroceramics for high-energy density capacitors: current status and future perspectives [J]. Chem. Rev., 2021, 121(10): 6124
[7] Wei L, Wang J K, Liu K G, et al. Nanocellulose/reduced graphene oxide composites for high performance supercapacitors [J]. Chin. J. Inorg. Chem., 2023, 39(3): 456
[7] 魏 良, 王健恺, 刘凯歌 等. 纳米纤维素/还原氧化石墨烯复合材料用于高性能超级电容器 [J]. 无机化学学报, 2023, 39(3): 456
[8] Yang L, Wu T T, Li H Q, et al. Preparation of nitrogen-doped carbon nanonets for high-performance supercapacitors [J]. Chin. J. Inorg. Chem., 2021, 37(6): 1017
[8] 杨 磊, 武婷婷, 李宏强 等. 用于高性能超级电容器的氮掺杂碳纳米网的制备 [J]. 无机化学学报. 2021, 37(6): 1017
[9] Liu H, Yang D H, Wang X Y, et al. Metal-organic framework-derived hollow carbon materials for electrochemical energy storage and oxygen reduction reaction [J]. Chin. J. Inorg. Chem., 2019, 35(11): 1921
[9] 刘 虎, 杨东辉, 王许云 等. 金属-有机框架衍生的中空碳材料及其在电化学能源存储与氧还原领域中的应用 [J]. 无机化学学报, 2019, 35(11): 192
[10] Sheng R, Tang T T, Tian M, et al. Research on heat-resistant phenolic resin-based activated carbon for supercapacitor electrodes [J]. Mater. Rep., 2023, 37(4): 25
[10] 盛 蕊, 唐婷婷, 田 敏 等. 耐热酚醛树脂基活性炭的制备及其超级电容器性能研究 [J]. 材料导报, 2023, 37(4): 25
[11] Singh G, Bahadur R, Ruban A M, et al. Synthesis of functionalized nanoporous biocarbons with high surface area for CO2 capture and supercapacitor applications [J]. Green Chem., 2021, 23(15): 5571
[12] Yang G J, Park S J. Conventional and microwave hydrothermal synthesis and application of functional materials: A review [J]. Materials, 2019, 12 (7): 1177
[13] Liu T, Zhang L, You W, et al. Core-shell nitrogen-doped carbon hollow spheres/Co3O4 nanosheets as advanced electrode for high-performance supercapacitor [J]. Small, 2018, 14(12): 1702407
[14] Qiu G F, Guo Y, Zhang Y X. Construction of N, O co-doped petal-like hierarchical porous carbon with an ultrahigh specific surface from waste bamboo for high-performance supercapacitors [J]. Ind. Eng. Chem. Res., 2022, 61(43): 16034
[15] Li Y P, Yang C H, Zheng H F, et al. High pyridine N-doped porous carbon derived from metal-organic frameworks for boosting potassium-ion storage [J]. J. Mater. Chem. A, 2018, 6(37): 17959
[16] Lu C, Wang D X, Zhao J J, et al. A continuous carbon nitride polyhedron assembly for high-performance flexible supercapacitors [J]. Adv. Funct. Mater. 2017, 27(8): 1606219
[17] Wang C J, Wu D P, Wang H J, et al. Nitrogen-doped two-dimensional porous carbon sheets derived from clover biomass for high performance supercapacitors [J]. J. Power Sources, 2017, 363(30): 375
[18] Liu J H, Li Z J, Wu S C, et al. Synthesis of biochar derived from jujun grass and the application in supercapacitors [J]. Chem. J. Chin. U., 2023, 44(4): 10
[18] 刘军辉, 李紫家, 吴树昌 等. 生物质巨菌草衍生炭的合成及在超级电容器中的应用 [J]. 高等学校化学学报, 2023, 44(4): 10
[19] Song X Q, Lei X P, Fan K, et al. Research progress of biomass derived carbon in supercapacitors [J]. Acta Mater. Compos. Sin., 2023, 40(3): 1328
[19] 宋晓琪, 雷西萍, 樊 凯 等. 基于生物质衍生炭在超级电容器中的研究进展 [J]. 复合材料学报, 2023, 40(3): 1328
[20] Li P H, Yang C, Wu C W, et al. Bio-based carbon materials for high-performance supercapacitors [J]. Nanomater., 2022, 12(17): 2931
[21] Wang C J, Yuan X Z, Guo G L, et al. Salt template tuning morphology and porosity of biomass-derived N-doped porous carbon with high redox-activation for efficient energy storage [J]. Colloid Surface A, 2022, 650: 129552
[22] Xiao X, Song H B, Lin S Z, et al. Scalable salt-templated synthesis of two-dimensional transition metal oxides [J]. Nat. Commun., 2016, 7: 11296
doi: 10.1038/ncomms11296 pmid: 27103200
[23] Zhao S, Lian J B, Zhang S, et al. Molten salt synthesis of submicron NiNb2O6 anode material with ultra-high rate performance for lithium-ion batteries [J]. Chem. Eng. J., 2023, 461(1): 141997
[24] Ma Z S, Zhang H Y, Yang Z Z, et al. Highly mesoporous carbons derived from biomass feedstocks templated with eutectic salt ZnCl2/KCl [J]. J. Mater. Chem. A, 2014, 2(45): 19324
[25] Wang C J, Wu D P, Wang H J, et al. Biomass derived nitrogen-doped hierarchical porous carbon sheets for supercapacitors with high performance [J]. J. Colloid Interface Sci., 2018, 523: 133
[26] Wang C J, Wu D P, Wang H J, et al. A green and scalable route to yield porous carbon sheets from biomass for supercapacitors with high capacity [J]. J. Mater. Chem. A, 2018, 6(3): 1244
[27] Ren J C, Huang Y L, Zhu H, et al. Recent progress on MOF-derived carbon materials for energy storage [J]. Carbon Energy, 2020, 2(2): 176
[1] 陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴. Zn含量对岩盐型高熵氧化物储锂性能的影响[J]. 材料研究学报, 2024, 38(7): 508-518.
[2] 吴倩芳, 何群, 常兵, 全宇鑫, 胡敬文, 李赛赛, 曹迎楠. 玻璃纤维基隔热多孔陶瓷的制备及其对中子的屏蔽性能[J]. 材料研究学报, 2024, 38(6): 471-480.
[3] 王俊, 王炫力, 刘爽, 宋蕊, 宋希文. Mn掺杂对(Y0.4Er0.6)3Al5O12 热障涂层材料的微观结构和导热性能的影响[J]. 材料研究学报, 2024, 38(6): 463-470.
[4] 郭智楠, 赵强, 李淑英, 王俊丽, 许琳, 尚建鹏, 郭永. 二维层状ZnNiAl-LDH负载氧化亚铜光催化剂的制备及其降解性能[J]. 材料研究学报, 2024, 38(6): 423-429.
[5] 王伟, 常文娟, 吕凡凡, 解泽磊, 于呈呈. 氟化六方氮化硼的制备及其作为水基添加剂的摩擦学性能[J]. 材料研究学报, 2024, 38(6): 410-422.
[6] 谭依玲, 李诗纯, 孙杰. 金属有机框架多孔玻璃agSALEM-2的制备[J]. 材料研究学报, 2024, 38(5): 373-378.
[7] 王强, 朱鹤雨, 刘志博, 朱毅, 刘培涛, 任文才. β-In2Se3 堆垛缺陷的电子显微学研究[J]. 材料研究学报, 2024, 38(5): 330-336.
[8] 徐汇, 张培垣, 徐娜娜, 刘涛, 张晓山, 王兵, 王应德. 耐高温SiO2/ZrO2 纳米纤维膜的力学和隔热性能[J]. 材料研究学报, 2024, 38(5): 365-372.
[9] 王琰, 张昊, 常娜, 王海涛. 酸-碱改性粉煤灰吸附剂的制备及其对染料的去除性能[J]. 材料研究学报, 2024, 38(5): 379-389.
[10] 李婧, 许英朝, 范浩爽, 陆逸, 李莉, 张贤玉. 新型双钙钛矿Ca2GdSbO6:Sm3+ 橙红色荧光粉的制备及其发光性能[J]. 材料研究学报, 2024, 38(4): 288-296.
[11] 刘锐, 张鼎冬, 张辉, 任文才, 杜金红. 空穴传输层的厚度对石墨烯基有机发光二极管性能的影响[J]. 材料研究学报, 2024, 38(3): 168-176.
[12] 周立臣. 等离子体氟改性TiO2 催化剂的制备及其光催化性能[J]. 材料研究学报, 2024, 38(2): 141-150.
[13] 李博森, 廖忠新, 高大强. BNZ组分对KNN基无铅压电陶瓷结构和性能的影响[J]. 材料研究学报, 2024, 38(1): 51-60.
[14] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[15] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.