Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (11): 860-866    DOI: 10.11901/1005.3093.2017.148
  研究论文 本期目录 | 过刊浏览 |
激光熔覆TiC/FeAl原位复合涂层
赵龙志1(), 杨海超1, 赵明娟1, 谢玉江2
1 华东交通大学材料科学与工程学院南昌 330013。
2 中国科学院金属研究所金属腐蚀与防护国家重点实验室沈阳 110016。
In-situ TiC/FeAl Composite Coating Fabricated by Laser Cladding
Longzhi ZHAO1(), Haichao YANG1, Mingjuan ZHAO1, Yujiang XIE2
1 Materials Science and Engineering College, East China Jiaotong University, Nanchang 330013, China.
2 State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences,Shenyang 110016, China.
引用本文:

赵龙志, 杨海超, 赵明娟, 谢玉江. 激光熔覆TiC/FeAl原位复合涂层[J]. 材料研究学报, 2017, 31(11): 860-866.
Longzhi ZHAO, Haichao YANG, Mingjuan ZHAO, Yujiang XIE. In-situ TiC/FeAl Composite Coating Fabricated by Laser Cladding[J]. Chinese Journal of Materials Research, 2017, 31(11): 860-866.

全文: PDF(5510 KB)   HTML
摘要: 

用激光熔覆法制备了TiC/FeAl原位复合涂层,使用光学显微镜(OM)和扫描电镜(SEM)观察了熔覆层的微观结构,使用能谱分析仪(EDS)和X射线衍射仪(XRD)分析了涂层的化学成分和物相,研究了熔覆层的显微硬度和耐磨性。结果表明:沿着熔池深度的方向从熔池底部到熔池顶部,FeAl基体从粗大的树枝晶渐渐转变为细小的等轴晶。原位TiC越过熔池界面进入基板表层,大部分TiC颗粒存在FeAl晶粒内部,熔池顶部的TiC颗粒含量较多。沿着熔池深度的方向从涂层顶部到基板,涂层的硬度呈阶梯形分布,熔池顶部涂层的硬度最高,涂层的硬度和耐磨性分别比基板高6倍和52倍。涂层的磨损机理为典型的磨粒磨损。

关键词 材料表面与界面激光熔覆原位TiC/FeAl复合涂层微观结构硬度耐磨性    
Abstract

The in-situ TiC/FeAl composite coating was fabricated by laser cladding technology in this paper. The microstructure of the coating was characterized by metallographic microscope (OM), scanning electron microscopy(SEM).The phases in the coating were examined by energy dispersive spectrometry (EDS) and X-ray diffraction (XRD), microhardness and wear resistance of the coating were also investigated. The results show that from the bottom to the surface of the melt pool along the depth the coarse dendrite grain is changed into fine quiaxed rosette grain. Some TiC particles going across the interface exist in the surface layer of the substrate. Most of TiC particles existing in the grains are nucleation centers during FeAl matrix solidification. The content of TiC particles in the top of the coating is much higher than that in other zone of the coating. Meanwhile, the microhardness and wear resistance of in-situ laser cladding are 5 times and 52 higher than those of substrate, respectively. And the wear mechanism of the composite coating is abrasive wear.

Key wordssurface and interface in the materials    laser cladding    in-situ TiC/FeAl composite coating    microstructure    microhardness    wear resistance
收稿日期: 2017-02-22     
基金资助:资助项目国家自然科学基金(51265014,51465019) 江西省科技厅科研项目(20142BDH80004, 20153BCB23005和20151BAB206044) 江西省教育厅科研项目(KJLD14040和GJJ150487)
作者简介:

赵龙志,男,1977年生,博士

Substrate C Mn Si S P
A283GRC 0.140~0.220 0.300~0.6510 ≤0.300 ≤0.0500 ≤0.0450
表1  A283GRC钢化学成分
图1  熔覆层的宏观形貌
图2  熔覆层的横截面宏观形貌
图3  熔覆层微观结构 (a)界面熔合区 (b)熔池底部 (c)中部 (d)顶部涂层的微观结构
图4  Fe-Al-Ti-C体系中主要反应产物的吉布斯自由能随温度变化关系曲线
图5  激光熔覆制备TiC/FeAl复合涂层EDS能谱分析
图6  熔覆层的XRD图谱
图7  熔覆层熔池深度方向的显微硬度分布
图8  基板和熔覆层的磨损率
图9  涂层磨损表面形貌
[1] Yao H W.Design Summary for bridges at turnout zones of high-speed railway[J]. Railway Standard Design, 2014, 58(7): 85(姚汉文. 高速铁路道岔区桥梁设计综述[J]. 铁道标准设计, 2014, 58(7): 85)
[2] M. K. Imran, S. H. Masood, J. Mazumder.Direct metal deposition (DMD) of H13 tool steel on copper alloy substrate: evaluation of mechanical properties[J]. Materials Science and Engineering A, 2011, 528: 3342
[3] B. Du, Z. Zou, X. Wang, S. Qu.Laser cladding of in situ TiB2/Fe composite coating on steel[J]. Applied Surface Science, 2008, 254(20): 6489
[4] Y. Pu, B. Guo, J. Zhou.Microstructure and tribological properties of in situ synthesized TiC, TiN, and SiCreinforced Ti3Al intermetallic matrix composite coatings on pure Ti by laser cladding[J]. Applied Surface Science, 2008, 255(5): 2697
[5] Liu F L, Zhao S S, Gao W Y.Effect of substrate on Ni60A-WC laser cladding coatings[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(5): 1319(刘发兰, 赵树森, 高文焱. 基材属性对Ni60A-WC激光熔覆涂层性能的影响[J]. 中国有色金属学报, 2014, 24(5): 1319)
[6] Zhao W J, Liu G Q, Wang J D, et al.High temperature carburizing process of 20Cr2Ni4A gear steel[J]. Heat Treatment of Metals, 2015, 40(12): 142(赵文军, 刘国强, 王金栋等. 20Cr2Ni4A齿轮钢高温渗碳工艺[J]. 金属热处理, 2015, 40(12): 142)
[7] S. L. Wang, X. F. Huang, M.X. Gong, W.G. Huang.Microstructure and mechanical properties of Ni-P-SiN nanowire electroless composite coatings[J]. Applied Surface Science, 2015, 357: 328
[8] S. Bhowmick, A. Banerji, A. T. Alpas.Tribological behavior of Al-6.5%, -12%, -18.5% Si alloys during machining using CVD diamond and DLC coated tools[J]. Surface & Coatings Technology, 2015, 284: 353
[9] L. Z. Zhao, M. J. Zhao, J. Mazumder.Ultra-fine Al-Si hypereutectic alloy fabricated by direct metal deposition[J]. Materials and Design, 2014, 56: 542
[10] Li D Y, Zhang J, Zhao L Z, et al.Research on microstructure and properties of Fe-Al composite coatings by laser cladding[J]. Foundry Technology, 2012, 33(8): 930(李德英, 张坚, 赵龙志等. 激光熔覆Fe-Al 复合涂层组织及性能研究[J]. 铸造技术, 2012, 33(8): 930)
[11] Wang X H, Zou Z D, Qu S Y.Laser cladding of in-situ TiB2-TiC particles reinforced Fe-based coatings[J]. Transactions of the China Welding Institution, 2012, 33(8): 25(王新洪, 邹增大, 曲仕尧. 激光原位合成TiB2-TiC颗粒增强铁基涂层[J]. 焊接学报, 2012, 33(8): 25)
[12] J. Li, C. Z. Chen, C. F. Zhang.Phase constituent and microstructure of Ti3Al/Fe3Al+TiN/TiB2 composite coating on titanium alloy[J]. Surface Review & Letters, 2012, 18(18): 103
[13] N. Cinca, C. Roberto, C Lima, et al.An overview of intermetallic research and application: status of thermal spray coatings[J]. Journal of Materials Research and Technology, 2013, 2(1): 75
[14] L. Z. Zhao, M. J. Zhao, D. Y. Li, et al.Study on Fe-Al-Si situ composite coating fabricated by laser cladding[J]. Applied Surface Science, 2012, 258: 3368
[15] Zhao L Z, Jiao Y.Effect of aluminum content on Al-Fe-Si/Al In-situ composites[J]. Material Engineering, 2014, 4: 7(赵龙志, 焦宇. Al含量对Al-Fe-Si/Al原位复合材料的影响[J]. 材料工程, 2014, 4: 7)
[16] F. J. N.Romero, R. A. Carballo, F. R. Reinoso, M. Komatsu. Synthesis of a (MoSi2, Mo5Si3)/SiC composite using an in situ solid-state displacement reaction between Mo2C and Si[J]. Journal of the Ceramic Society of Japan, 2000, 108(1263): 957
[17] International Organization for Standardization. ISO 6507: Metallic materials-Vickers hardness test. 3thed. ISO; 2005
[18] L. Z. Zhao, X. Y. Jiang, M. J. Zhao, J. Zhang.Phase-field simulation of dendrite growth of magnesium alloy under non-isothermal solidification[J]. Advanced Materials Research, 2014, 848: 231
[19] Wu L, Chen Z, Zhuang H C, et al.Microscopic phase-field simulation of formation and motion of ordered domain boundaries in B2-FeAl intermetallic compound[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(3): 687(伍林, 陈铮, 庄厚川等. 微观相场模拟B2FeAl 金属间化合物有序畴界的形成和迁移[J]. 中国有色金属学报, 2013, 23(3): 687)
[20] Bramfitt B L.The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron[J]. Metallurgical and Materials Transactions B, 1970, 1(7): 1987
[21] Pan N, Song B, Zai Q J, et al.Effect of lattice disregistry on the heterogeneous nucleation catalysis of liquid steel[J]. Journal of University of Science and Technology Beijing, 2010, 32(2): 179(潘宁, 宋波, 翟启杰等. 钢液非均质形核触媒效用的点阵错配度理论[J]. 北京科技大学学报, 2010, 32(2): 179)
[22] Yan S X, Dong S Y, Xu B S, et al.Effect of molten pool convection on pores and elements distribution in the process of laser cladding[J]. Infrared and Laser Engineering, 2014, 43(9): 2832(闫世兴, 董世运, 徐滨士等. 激光熔覆过程中熔池对流运动对熔覆层气孔和元素分布的影响(英文)[J]. 红外与激光工程, 2014, 43(9): 2832)
[1] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[4] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[5] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[6] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[7] 田志刚, 李新梅, 秦忠, 王晓辉, 刘伟斌, 黄永. CoCrFeNiTi x 高熵合金涂层的显微组织和耐磨性能[J]. 材料研究学报, 2023, 37(3): 219-227.
[8] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[9] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[10] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[11] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[12] 王艳坤, 王宇, 纪伟, 王智慧, 彭翔飞, 呼宇雄, 刘斌, 徐宏, 白培康. 碳纤维/铝复层材料的组织和力学性能[J]. 材料研究学报, 2022, 36(7): 536-544.
[13] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[14] 张益铭, 赵子彦, 牟娟. 添加Nb元素对TiZr基非晶复合材料性能的影响[J]. 材料研究学报, 2022, 36(6): 401-408.
[15] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.