Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (6): 443-447    DOI: 10.11901/1005.3093.2015.687
  研究论文 本期目录 | 过刊浏览 |
w(MgO)对高钛高炉渣黏流特性的影响*
唐昭辉, 丁学勇, 董越, 刘程宏, 魏国()
东北大学冶金学院 沈阳 110819
Influence of w(MgO) on Viscous Flow Property of High Ti-containing Blast Furnace Slag
TANG Zhaohui, DING Xueyong, DONG Yue, LIU Chenghong, WEI Guo**()
School of Metallurgy, Northeastern University, Shenyang 110819, China
引用本文:

唐昭辉, 丁学勇, 董越, 刘程宏, 魏国. w(MgO)对高钛高炉渣黏流特性的影响*[J]. 材料研究学报, 2016, 30(6): 443-447.
Zhaohui TANG, Xueyong DING, Yue DONG, Chenghong LIU, Guo WEI. Influence of w(MgO) on Viscous Flow Property of High Ti-containing Blast Furnace Slag[J]. Chinese Journal of Materials Research, 2016, 30(6): 443-447.

全文: PDF(706 KB)   HTML
摘要: 

针对攀西地区高镁型钒钛磁铁矿用量增加、高炉渣中MgO质量分数逐渐升高的特点, 开展了w(MgO)对含TiC、TiN、Ti(C, N) 等高熔点物质的高钛型高炉渣黏流特性影响的试验研究。结果表明, 对于w(TiO2)=20%、w(A12O3)=14%、二元碱度R2为1.0~1.2的高炉渣, w(MgO)由8%增加到12%时, 熔化性温度由1332℃升高到1364℃, 炉渣趋于“短渣”特性; 1450℃以上时, 炉渣黏度低于0.3 Pas, 仍具有良好的流动性, 可满足高炉生产要求。

关键词 材料合成与加工工艺高钛型高炉渣w(MgO)黏度熔化性温度    
Abstract

It is well known that the increasing dosage of high Mg-containing V-bearing titanomagnetite, the iron ore was adopted for the iron works at Panxi area of the Southwest China and correspondingly the MgO content (%mass fraction) increased gradually in the blast furnace slag. In view of the above fact, it is meaningful to investigate the influence of MgO content on the viscous flow property of high-Ti blast furnace slag containing high melting point material, such as TiC, TiN, Ti(C, N) etc. Results show that the blast furnace slag containing 20% TiO2 and 14% A12O3 presents the so call "short slag" characteristic with binary basicity R2 in a range of 1.0~1.2, of which the melting temperature increases from 1332℃ to 1364℃ with the increasing MgO content from 8% to 12% . At temperatures above 1450℃, the slag viscosity is lower than 0.3 Pas with a good liquidity, which can meet the requirements for the smooth operation of blast furnace.

Key wordssynthesizing and processing technics    BF slag of high titanium    w(MgO)    viscosity    melting temperature
收稿日期: 2015-11-30     
ZTFLH:  TF534.1  
基金资助:*国家自然科学基金51174048和中央高校基本科研业务费专项资金N120402011资助项目
作者简介: 本文联系人: 魏 国
R2 w(CaO) w(SiO2) w(TiO2) w(A12O3) w(MgO) w(Ti(C, N)) w*
1.03 26.91% 26.12% 20.19% 13.65% 9.59% 0.33% 3.21%
表1  高炉现场渣化学成分
R2 w(CaO) w(SiO2) w(MgO) w(A12O3) w(TiO2) w(Ti(C,N)) w* Slag proportion
1.00 27.52% 27.52% 8.00% 14.00% 20.00% 0.28% 2.68% 83.42%
1.00 26.27% 26.27% 10.00% 14.00% 20.00% 0.32% 3.14% 97.63%
1.00 25.33% 25.33% 12.00% 14.00% 20.00% 0.31% 3.03% 94.14%
1.10 28.83% 26.21% 8.00% 14.00% 20.00% 0.28% 2.68% 83.42%
1.10 27.56% 25.05% 10.00% 14.00% 20.00% 0.32% 3.07% 95.90%
1.10 26.56% 24.14% 12.00% 14.00% 20.00% 0.31% 2.99% 92.43%
1.20 30.02% 25.02% 8.00% 14.00% 20.00% 0.28% 2.68% 83.42%
1.20 28.77% 23.98% 10.00% 14.00% 20.00% 0.30% 2.95% 91.80%
1.20 27.75% 23.12% 12.00% 14.00% 20.00% 0.29% 2.84% 88.52%
表2  炉渣试样成分组成/%
图1  RTW-10型熔体物性综合测定仪示意图
图2  w(MgO)对炉渣η-T的影响
图3  炉渣矿物组成图
图4  w(MgO)对炉渣熔化性温度下黏度的影响
图5  w(MgO)对熔化性温度影响图
1 H. Kim, H. Matsuura, F. Taukihashi, W. Wang, J.M. Dong, I. Sohn, Effect of Al2O3 and CaO/SiO2 on the viscosity of calcium-silicate based slags containing 10 mass pct MgO, Metallurgical & Materials Transactions B, 44(1), 5(2012)
2 X. Dai, X. P. Gan, C. F. Zhang, Viscosities of FenO-MgO-SiO2 and FenO-MgO-CaO-SiO2 slags, Trans. Nonferrous Met. Soc. China, 13(6), 1451(2003)
3 B. Zhao, E. Jak, P. C. Hayes, in Tenth International Ferroalloys Congress, Phase Equilibria in High MgO Ferro- and silico-manganese Smelting Slags, edited by Shozo Mizoguchi (Japan, Iron Steel Institute Japan Keidanren Kaikan, 2005) p. 1019
4 B. Zhao, E. Jak, P. C. Hayes, Phase equilibria in high MgO ferro-manganese and silico-manganese smelting slags, ISIJ International, 45(7), 1019(2005)
doi: 10.2355/isijinternational.45.1019
5 V. Nurni, F.Z. Ji, D. S. Chen, S. Seetharaman, Viscosity measurements on some fayalite slags, ISIJ International, 41(7), 722(2001)
6 A. Yazawa, Effects of Oxygen Pressure, Al2O3 and MgO on the liquidus surface of FeOx-SiO2-CaO System, Tetsu- to- Hagane, 86, 1(2000)
7 J. R. Kim, Y. S. Lee, D. J. Mim, S. M. Jung, S. M. Yi, Influence of MgO and Al2O3 contents on viscosity of blast furnace type slags containing FeO, ISIJ International, 44(8), 1291(2004)
8 F. M. Shen, X. Jiang, G. S. Wu, G. Wei, X. G. Li, Y. S. Shen, Proper MgO addition in blast furnace operation, ISIJ International, 46(1), 65(2006)
doi: 10.2355/isijinternational.46.65
9 H. Wang, G. B. Qiu, Q. Y. Deng, S.W. Ma, in 3rd International Symposium on High-Temperature Metallurgical Processing, Viscosity Evolution of Blast Furnace Slag Bearing Titanium, edited by Tao Jiang, Jiann-Yang Hwang, Patrick Masset, Onuralp Yucel, Rafael Padilla, Guifeng Zhou, (USA, Wiley-TMS, 2012)p.137
10 DU Hegui, The Principle of the Blast Furnace Smelting Vanadium Titanium Magnetite (Beijing, Science Press, 1996) p.50
10 (杜鹤桂, 高炉冶炼钒钛磁铁矿原理(北京, 科学出版社, 1996)p.50)
11 WAN Xin, PEI Henian, BAI Chenguang, ZHOU Peitu, Reduction of titanium oxide and thickening of blast furnace slag bearing higher titania, Journal of Chongqing University (Natural Science Edition), 23(5), 36(2000)
11 (万新, 裴鹤年, 白晨光, 周培土, 钛氧化物还原与钛渣变稠, 重庆大学学报(自然科学版), 23(5), 36(2000))
doi: 10.11835/j.issn.1000-582x.2000.05.010
12 LV Qing, HUANG Honghu, CHEN Shujun, LIU Xiaojie, SUN Yanqin, DING Haichao, Effect of solid carbon and TiC content on the performance of high titanium-bearing slag of blast furnace, Iron Steel Vanadium Titanium, 36(2), 84(2015)
12 (吕庆, 黄宏虎, 陈树军, 刘小杰, 孙艳芹, 丁海超, 固体碳和TiC含量对含钛高炉渣性能的影响, 钢铁钒钛, 36(2), 84(2015))
13 DU Hegui, DU Gang, The Influence of Ti(C, N) on Smelting in BF, Iron Steel Vanadium Titanium, 34(5), 509(2003)
13 (杜鹤桂, 杜钢, Ti(C, N)对高炉冶炼的影响, 钢铁钒钛, 12(3), 1(1991))
14 ZHANG Lu, Study on the Rheological Properties and Conductivity of Heterogeneous Phase Titanium-Bearing Metallurgical Slag, Master Degree Thesis, Northeastern University(2013)
14 (张璐, 非均相含钛冶金熔渣流变特性及导电性研究, 硕士学位论文, 东北大学(2013))
15 MOK Puikun, CHEN Chungshan, An investigation of viscosity, fusibility and mineral constitution of blast-furnace titanoslags, Acta Metallugica Sinica, 7(4), 363(1964)
15 (莫培根, 陈钧珊, 高炉型钛渣的黏度, 熔化性和矿物组成, 金属学报, 7(4), 363(1964))
16 ZHANG Wei, ZHAO Kai, RAO Jiating, FU Weiguo, CHU Mansheng, Discussion on Standardization of Melt-Property Temperature of Slag, Journal of Iron and Steel Research, 23(1), 16(2011)
16 (张伟, 赵凯, 饶家庭, 付卫国, 储满生, 炉渣熔化性温度标准化的探讨, 钢铁研究, 23(1), 16(2011))
[1] 周海涛, 侯湘武, 汪彦博, 肖旅, 袁勇, 孙京丽. Nb-TiAl合金的高温变形行为及其板材的性能[J]. 材料研究学报, 2022, 36(6): 471-480.
[2] 闫福照, 李静, 熊良银, 刘实. FeCr-ODS铁素体合金的氧化+粉锻工艺制备及其微观结构[J]. 材料研究学报, 2022, 36(6): 461-470.
[3] 王永鹏, 贾治豪, 刘梦竹. 二维CdO纳米棒的制备及其用于葡萄糖传感器的可行性[J]. 材料研究学报, 2021, 35(1): 53-58.
[4] 夏傲, 赵晨鹏, 曾啸雄, 韩曰鹏, 谈国强. B掺杂MnO2的制备及其电化学性能[J]. 材料研究学报, 2021, 35(1): 36-44.
[5] 蔡国栋, 程西云, 王典. FDM3D打印316L不锈钢试样和La对析出物形貌和分布的影响[J]. 材料研究学报, 2020, 34(8): 635-640.
[6] 谢礼兰, 杨冬升, 凌静. 高容量锂电池负极材料TiNb2O7的合成及其机理[J]. 材料研究学报, 2020, 34(5): 385-391.
[7] 马炜杰,杨西荣,罗雷,刘晓燕,郝凤凤. 复合形变超细晶纯钛的动态再结晶模型[J]. 材料研究学报, 2020, 34(3): 217-224.
[8] 姜巨福, 王迎, 肖冠菲, 邓腾, 刘英泽, 张颖. 变质细化和热处理对挤压铸造成形A356铝合金构件性能的影响[J]. 材料研究学报, 2020, 34(12): 881-891.
[9] 杨占鑫, 吴琼, 任奕桥, 屈凯凯, 张哲豪, 仲为礼, 范广宁, 齐国超. 宏量制备层状Ti3C2及其超级电容的性能[J]. 材料研究学报, 2020, 34(11): 861-867.
[10] 秦斌,王群,王富孟,靳利娥,解小玲,曹青. 高电导率低热膨胀系数针状焦的制备[J]. 材料研究学报, 2019, 33(1): 53-58.
[11] 王强, 郝瑞亭, 赵其琛, 刘思佳. 多周期分层溅射硫化物靶制备铜锌锡硫薄膜太阳电池[J]. 材料研究学报, 2018, 32(6): 409-414.
[12] 刘正华, 王兢, 杜海英, 王惠生, 李晓干, 王小风. 基于联合仿真方法研究静电纺丝轨迹[J]. 材料研究学报, 2018, 32(2): 127-135.
[13] 李延伟, 谢志平, 刘参政, 姚金环, 姜吉琼, 杨建文. 二维褶皱状V2O5纳米材料的制备和储锂性能[J]. 材料研究学报, 2017, 31(5): 374-380.
[14] 李成冬, 姚志垒, 李举, 徐进, 熊新. LaF3表面修饰Li[Li0.2Mn0.54Ni0.13Co0.13]O2的制备及其电化学性能[J]. 材料研究学报, 2017, 31(5): 394-400.
[15] 唐闲逸, 魏晓慧, 许德平, 张海永, 贺欣, 熊楚安, 唐瀚滢. 中温煤沥青喹啉不溶物的脱除及炭化制备针状焦*[J]. 材料研究学报, 2016, 30(6): 448-456.