Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (2): 81-87    DOI: 10.11901/1005.3093.2013.365
  本期目录 | 过刊浏览 |
尺度对金属材料电阻率影响的研究进展*
张广平1(),李孟林1,吴细毛2,李春和2,罗雪梅1
1. 中国科学院金属研究所 沈阳材料科学国家(联合)实验室 沈阳 110016
2. 辽宁省电力有限公司电力科学研究院 沈阳 110006
Research Progress on Effect of Length Scale on Electrical Resistivity of Metals
Guangping ZHANG1,**(),Menglin LI1,Ximao WU2,Chunhe LI2,Xuemei LUO1
1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, ChineseAcademy of Sciences, Shenyang 110016
2. Northeast Electric Power Research Institute, Liaoning Electric Co., LTD, Shenyang 110006
引用本文:

张广平,李孟林,吴细毛,李春和,罗雪梅. 尺度对金属材料电阻率影响的研究进展*[J]. 材料研究学报, 2014, 28(2): 81-87.
Guangping ZHANG, Menglin LI, Ximao WU, Chunhe LI, Xuemei LUO. Research Progress on Effect of Length Scale on Electrical Resistivity of Metals[J]. Chinese Journal of Materials Research, 2014, 28(2): 81-87.

全文: PDF(1549 KB)   HTML
摘要: 

随着微/纳米技术的发展, 在微/纳尺度器件中金属材料的几何尺度或微观结构尺度从宏观尺度逐渐减小到微米、亚微米甚至纳米量级, 其室温电阻率往往表现出明显的尺寸效应。本文总结了近年来关于不同尺度金属材料电阻率的研究进展, 重点介绍了金属材料的微观结构、缺陷尺度以及几何尺度对金属材料电阻率的影响及相关的理论模型, 探讨了材料内部微观结构尺度与几何尺度对材料导电性能的影响规律。最后, 对微尺度金属材料电阻率及其服役可靠性的研究趋势进行了展望。

关键词 材料科学基础学科电阻率综述尺寸效应微观结构微尺度    
Abstract

With the development of micro/nano-technologies, microstructural scales or geometrical dimensions of metal conductors in the micro/nano-devices are becoming shrunk from macroscopic scale to micron scale, submicron scale and even nanometer scale, leading to the fact that the electrical resistivity of metal conductors at room temperature tends to exhibit evident size effects. Recent studies on the electrical resistivity of metal conductors at different length scales were reviewed in this paper, focusing on the effects of the geometrical scales of microscalematerials and of the scale of microstructures and defects in the materials as well as the relevant theoretical models. Finally the developing tendency of the investigations on the electrical resistivity of metal conductors and the service reliability of the microscale metals in the future are also addressed.

Key wordsfoundational discipline in materials science    electrical resistivity    reviews    size effect    microstructure    microscale
收稿日期: 2013-05-31     
基金资助:* 国家电网公司总部科技和科技部“973”计划2010CB631003 资助项目。
图1  工业纯铜电阻率和电导率随着ARB道次的变化规律[30]
图2  影响金属材料电阻率各个因素的示意图
图3  几种金属薄膜电阻率随膜厚度的变化规律[39]
图4  Cu/Ta多层膜电阻率随单层膜厚度变化规律以及FS模型、MS模型和FS-MS模型对Cu/Ta多层膜电阻率的计算结果[26]
图5  纯铜电导率与材料尺度(几何尺度和微观结构尺度)间的关系
1 J. D. Plummer, M. D. Deal, P. B. Griffin,Silicon VLSI technology: Fundamentals, Practice and Modeling(Prentice Hall, 2000)
2 P. Moon, V. Chikarmane, K. Fischer, R. Grover, T. A. Ibrahim, D. Ingerly, K. J. Lee, C. Litteken, T. Mule, S. Williams,Process and electrical results for the on-die Interconnect stack for Intel's 45nm process generation, Intel Technology J., 12, 529(2008)
3 D. R. Frear,Materials issues in area-array microelectronic packaging, JOM-J. Miner. Met.& Mater. Soc., 51(2), 22(1999)
4 A. I. Kingon, J. P. Maria, S. K. Streiffer,Alternative dielectrics to silicon dioxide for memory and logic devices, Nature, 406(6799), 1032(2000)
5 L. L. Melo, A. R. Vaz, M. C. Salvadori, M. Cattani,Grain sizes and surface roughness in platinum and gold thin films, J. Metastab. Nanocryst., 20-21, 623(2004)
6 G. P. Zhang, Z. G. Wang,Progress in fatigue of small dimensional materials, Acta Metall. Sinica, 41(1), 1(2005)
7 G. P. Zhang, C. A. Volkert, R. Schwaiger, R. Monig, O. Kraft,Fatigue and thermal fatigue damage analysis of thin metal films, Microelectron. Reliab., 47(12), 2007(2007)
8 M. Wang, B. Zhang, G. P. Zhang, C. S. Liu,Evaluation of thermal fatigue damage of 200-nm-thick Au interconnect lines, Scripta Mater., 60(9), 803(2009)
9 B. Zhang, Q. Y. Yu, J. Tan, G. P. Zhang,Electric current-induced failure of 200-nm-thick gold interconnects, J Mater Sci Technol, 24(6), 895(2008)
10 G. P. Zhang, X. F. Zhu, Y. P. Li,Evaluation of reliability of metal ilms/multilayers, El Packag Tech Conf, 890(2008)
11 M. Wang, B. Zhang, C. S. Liu, G. P. Zhang,Study on thermal fatigue failure of thin gold film with alternating current loading, Acta Metall. Sinica, 47(5), 601(2011)
12 G. P. Zhang, C. A. Volkert, R. Schwaiger, P. Wellner, E. Arzt, O. Kraft,Length-scale-controlled fatigue mechanisms in thin copper films, Acta Mater., 54(11), 3127(2006)
13 M. Wang, B. Zhang, G. P. Zhang, C. S. Liu,Scaling of reliability of gold interconnect lines subjected to alternating current, Appl. Phys. Lett., 99(1), 011910(2011)
14 N. Agrait, A. L. Yeyati, J. M. van Ruitenbeek,Quantum properties of atomic-sized conductors, Physics Reports-Review Section of Physics Letters, 377(2-3), 81(2003)
15 D. Josell, S. H. Brongersma, Z. Tokei,Size-dependent resistivity in nanoscale interconnects, Ann. Rev. Mater. Res., 39, 231(2009)
16 S. O.Kasap,Principles of electronic materials and devices, 3rd ed (McGraw-Hill, 2006)
17 J. R. Sambles,The resistivity of thin metal films—Some critical remarks, Thin Solid Films, 106(4), 321(1983)
18 L. M. Clarebrough, M. E. Hargreaves, M. H. Loretto,Electrical resistivity of dislocations in face-centred cubic metals, Philos. Mag., 7(73), 115(1962)
19 D. A. Greenwood,Note on theory of thermal conduction in metals, Proc. Phys. Soc. London, 80(513), 226(1962)
20 Y. Namba,Resisitivity and temperature coefficient of thin metal films with rough surface, Japanese J. App. Phys., 9(11), 1326(1970)
21 K. Nallamshetty, M. A. Angadi,Transport-properties of Cu/Cr multilayer films, Physica Status Solidi A-App. Res., 132(2), 397(1992)
22 Q. T. Jiang, M. H. Tsai, R. H. Havemann,Line width dependence of copper resistivity, Proceedings of the IEEE 2001 International, 227(2001)
23 J. Alonso, M. L. Fdez-Gubieda, G. Sarmiento, J. M. Barandiaran, A. Svalov, I. Orue, J. Chaboy, L. F. Barquin, C. Meneghini, T. Neisius, N. Kawamura,Influence of the interface on the electronic channel switching of a Fe-Ag thin film on a Si substrate, App. Phy. Lett., 95(8), 082103(2009)
24 R. L. Graham, G. B. Alers, T. Mountsier, N. Shamma, S. Dhuey, S. Cabrini, R. H. Geiss, D. T. Read, S. Peddeti,Resistivity dominated by surface scattering in sub-50 nm Cu wires, App. Phys. Lett., 96(4), 042116(2010)
25 M. C. Salvadori, A. R. Vaz, R. J. C. Farias, M. Cattani,Electrical resistivity of nanostructured platinum and gold thin films, Surf. Rev. Lett., 11(2), 223(2004)
26 M. Wang, B. Zhang, G. P. Zhang, Q. Y. Yu, C. S. Liu,Effects of interface and grain boundary on the electrical resistivity of Cu/Ta multilayers, J. Mater. Sci. Tech., 25(5), 699(2009)
27 H. Gleiter,Nanocrystalline Materials, Prog. Mater. Sci., 33(4), 223(1989)
28 E. Botcharova, J. Freudenberger, L. Schultz,Mechanical and electrical properties of mechanically alloyed nanocrystalline Cu-Nb alloys, Acta Mater., 54(12), 3333(2006)
29 A. Habibi, M. Ketabchi,Enhanced properties of nano-grained pure copper by equal channel angular rolling and post-annealing, Mater. Design, 34, 483(2012)
30 S. A. Hosseini, H. D. Manesh,High-strength, high-conductivity ultra-fine grains commercial pure copper produced by ARB process, Mater.& Design, 30(8), 2911(2009)
31 I. Nakamichi,Electrical resistivity and grain boundaries in metals, Intergranular and Interphase Boundaries in Materials, Pt1, 207, 47(1996)
32 L. H. Qian, Q. H. Lu, W. J. Kong, K. Lu,Electrical resistivity of fully-relaxed grain boundaries in nanocrystalline Cu, Scripta Mater., 50(11), 1407(2004)
33 X. H. Chen, L. Lu, K. Lu,Electrical resistivity of ultrafine-grained copper with nanoscale growth twins, J. App. Phys., 102(8), 083708(2007)
34 J. J. Thomson,Electric conductivity of thin metallic films, Proc. of the Cambridge Philosophical Society, 11, 120(1901)
35 K. Fuchs,The conductivity of thin metallic films according to the electron theory of metals, Proc. of the Cambridge Philosophical Society, 34, 100(1938)
36 E. H. Sondheimer,The mean free path of electrons in metals, Adv. in Phys., 1(1), 1(1952)
37 A. F. Mayadas, M. Shatzkes,Electrical-resistivity model for polycrystalline films - case of arbitrary reflection at external surfaces, Phys. Rev. B, 1(4), 1382(1970)
38 K. M. Mannan, K. R. Karim,Grain boundary contribution to the electrical conductivity of polycrystalline Cu films, J. of Phys. F: Met. Phys., 5(9), 1687(1975)
39 J. M. Camacho, A. I. Oliva,Surface and grain boundary contributions in the electrical resistivity of metallic nanofilms, Thin Solid Films, 515(4), 1881(2006)
40 X. Zhang, X. H. Song, X. G. Zhang, D. L. Zhang,Grain boundary resistivities of polycrystalline Au films, Europhys. Lett, 96(1), 17010(2011)
41 O. Anderoglu, A. Misra, F. Ronning, H. Wang, X. Zhang,Significant enhancement of the strength-to-resistivity ratio by nanotwins in epitaxial Cu films, J. of App. Phys., 106(2), 024313(2009)
42 C. Durkan, M. E. Welland,Size effects in the electrical resistivity of polycrystalline nanowires, Phys. Rev. B, 61(20), 14215(2000)
43 Q. J. Huang, C. M. Lilley, M. Bode,Surface scattering effect on the electrical resistivity of single crystalline silver nanowires self-assembled on vicinal Si (001), App. Phys. Lett., 95(10), 103112(2009)
44 Y. Kitaoka, T. Tono, S. Yoshimoto, T. Hirahara, S. Hasegawa, T. Ohba,Direct detection of grain boundary scattering in damascene Cu wires by nanoscale four-point probe resistance measurements, App. Phys. Lett., 95(5), 052110(2009)
45 S. M. Rossnagel, T. S. Kuan,Alteration of Cu conductivity in the size effect regime, J. Vac. Sci.& Techno. B, 22(1), 240(2004)
46 J. W. Lim, K. Mimura, M. Isshiki,Thickness dependence of resistivity for Cu films deposited by ion beam deposition, App. Surf. Sci., 217(1-4), 95(2003)
[1] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[3] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[4] 蒋梦蕾, 代斌斌, 陈亮, 刘慧, 闵师领, 杨帆, 侯娟. 选区激光熔化成形尺寸对304L不锈钢点蚀性能的影响[J]. 材料研究学报, 2023, 37(5): 353-361.
[5] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[6] 王艳坤, 王宇, 纪伟, 王智慧, 彭翔飞, 呼宇雄, 刘斌, 徐宏, 白培康. 碳纤维/铝复层材料的组织和力学性能[J]. 材料研究学报, 2022, 36(7): 536-544.
[7] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[8] 张益铭, 赵子彦, 牟娟. 添加Nb元素对TiZr基非晶复合材料性能的影响[J]. 材料研究学报, 2022, 36(6): 401-408.
[9] 孙艺, 韩同伟, 操淑敏, 骆梦雨. 氟化五边形石墨烯的拉伸性能[J]. 材料研究学报, 2022, 36(2): 147-151.
[10] 曾志鹏, 宋小艳, 孙勇, 宋双林, 陆伟, 贺正龙. 聚氨酯/水玻璃注浆材料固化过程中的微观结构和力学性能[J]. 材料研究学报, 2022, 36(11): 855-861.
[11] 赵宁, 焦大, 朱艳坤, 刘德学, 刘增乾, 张哲峰. 天然铠甲高效防护的材料学机理[J]. 材料研究学报, 2022, 36(1): 1-7.
[12] 范金辉, 李鹏飞, 梁晓军, 梁建平, 徐长征, 蒋力, 叶祥熙, 李志军. 镍-不锈钢复合板轧制过程中界面的结合机制[J]. 材料研究学报, 2021, 35(7): 493-500.
[13] 谢瑞峰, 仵云飞, 唐百晓. 冻融作用后超高性能混凝土中钢纤维的拔出行为研究[J]. 材料研究学报, 2021, 35(6): 433-440.
[14] 王昊, 赵洪峰, 康加爽, 周远翔, 谢清云. B2O3Al2O3共同掺杂ZnO压敏陶瓷的性能[J]. 材料研究学报, 2021, 35(2): 110-114.
[15] 宋贵宏, 李秀宇, 李贵鹏, 杜昊, 胡方. 溅射沉积富镁Mg3Bi2薄膜的热电性能[J]. 材料研究学报, 2021, 35(11): 835-842.