Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (5): 495-499    
  研究论文 本期目录 | 过刊浏览 |
含IPA的TMAH溶液对湿法腐蚀硅倒金字塔阵列微观形貌演化的研究
肖  婷1,  刘 波1,   王新练2,   王春芬3,  任 丁1
1.辐射物理及技术教育部重点实验室 四川大学原子核科学技术研究所 成都 610064
2.河南城建学院数理系 平顶山 467001
3.中国船舶重工业集团洛阳船舶材料研究所 洛阳 471039
Studies on Microstructure Evolution of Inverted Pyramid–shaped Arrays Prepared by Wet Etching in TMAH Solution Containing IPA
XIAO Ting1,  LIU Bo1,  WANG Xinlian2, WANG Chunfen3,  REN Ding1
1.Key Laboratory of Radiation and Technology of Education Ministry of China, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064
2.Department of Math and Physics, Henan University of Urban Construction, Pingdingshan 467001
3.Institute of Luoyang Ship Materials, China Shipbuilding Heavy Industry, Luoyang 471039
引用本文:

肖 婷 刘 波 王新练 王春芬 任 丁 . 含IPA的TMAH溶液对湿法腐蚀硅倒金字塔阵列微观形貌演化的研究[J]. 材料研究学报, 2011, 25(5): 495-499.
, . Studies on Microstructure Evolution of Inverted Pyramid–shaped Arrays Prepared by Wet Etching in TMAH Solution Containing IPA[J]. Chin J Mater Res, 2011, 25(5): 495-499.

全文: PDF(780 KB)  
摘要: 采用含异丙醇(IPA)的TMAH溶液腐蚀经Si3N4掩膜形成10 μm×10 μm窗口的单晶硅片。在硅片表面得到了内壁光滑的倒金字塔V型口阵列。研究发现: 与纯TMAH对硅的各向异性腐蚀特性相比, 添加IPA使TMAH溶液对硅各个晶面的腐蚀速率减小, 致使含IPA的TMAH溶液对硅的腐蚀速率和各向异性因子比在纯TMAH中要小。通常认为, 腐蚀形成的倒金字塔结构侧壁晶面为(111)面, 但本研究表明, 由各向异性腐蚀形成倒金字塔的侧壁晶面随腐蚀时间发生了一系列转化。在腐蚀开始时, 倒金字塔侧面由(567)面逐渐向(111)面转化; 继续腐蚀时, 腐蚀面偏离(111)面, 向(443)面转化。
关键词 材料表面与界面湿法腐蚀TMAH溶液倒金字塔结构侧壁晶面夹角    
Abstract:The inverted pyramid-shaped arrays with smooth surface are studied using anisotropic wet etching in TMAH solution containing IPA, which were prepared on (100) orientation silicon wafers with the arrays of 10 μm×10 μm windows. Etching rates and anisotropic factor of the monocrystalline silicon are reduced by adding IPA to TMAH solution in comparison with pure TMAH. It is generally thought that the side facets of inverted pyramid–shaped structures are bounded by (111) planes, but this research indicates that inverted pyramid-shaped structures undergo dramatic changes in shape. At the beginning of etching, the side facets of the inverted pyramid-shaped structures go through the transformation of the (567) facets into (111) planes, then the etching planes deviate from (111) planes, exposing (443) planes.
Key wordssurface and interface in the materials    wet etching    TMAH    inverted pyramid-shape structures    intersection angles between side planes and (100) plane
收稿日期: 2011-07-18     
ZTFLH: 

TN405

 
基金资助:

国家自然科学基金(11005076,11075112)和辐射物理及技术教育部重点实验室开放基金(2011--7, 2011--6)以及教育部博士点专项基金(新教师奖20100181120112)资助项目。

1 A.G.Nassiopoulou, Porous silicon for sensor applications, Chemistry and Materials Science, 204(1), 189(2005)

2 Albert Birner, Ralf B. Wehrspohn, Ulrich M.G¨osele, Kurt Busch, Silicon-based photonic crystals, Advanced Materials, 13(6), 377(2001)

3 Y.B.Hua, T.B.Mei, L.Y.Ling, S.Z.Biao, S.X.Ning, Z.Yan, Process improvement of surface texturization of monocrystalline silicon for solar cells, Micronanoelectronic Technology, 46(11), 695(2009)

4 H.Seidel, L.Csepregi, A.Heuberger, H.BaumgSrtel, Anisotropic etching of crystalline silicon in alkaline solutions, Electrochem. Soc., 137(10), 3612(1990)

5 MA Qinghua, BAO Minhang, SHEN Shaoqun, HU Chengyu, Studies on the anisotropic etching characteristics in the TMAH–IPA–water system, Chinese Journal of Sensors and Actuators, 7(3), 1(1994)

(马青华, 鲍敏杭, 沈绍群, 胡澄宇, 四甲基氢氧化铵: 异丙醇: 水系统对硅的各向异性腐蚀, 传感技术学报,  7(3), 1(1994))

6 K.Biswas, S.Kal, Etch characteristics of KOH, TMAH and dual doped TMAH for bulk micromachining of silicon, Microelectronics Journal, 37(6), 519(2006)

7 A.Merlos, M.C.Acero, M.H.Bao, J.Bausells, J.Esteve, A study of the undercutting characteristics in the TMAH–IPA system, Micromechanics and Microengineering, 2(3), 181(1992)

8 Mitsuhiro Shikida, Takehiro Masuda, Daisuke Uchikawa, Kazuo Sato, Surface roughness of single-crystal silicon etched by TMAH solution, Sensors and Actuators, 90(3), 223(2001)

9 Chii-Rong Yang, Po-Ying Chen, Cheng-Hao Yang, Yuang- Cherng Chiou, Rong-Tsong Lee, Effects of various iontyped surfactants on silicon anisotropic etching properties in KOH and TMAH solutions, Sensors and Actuators, 119(1), 271(2005)

10 Malgorzata Kramkowska, Irena Zubel, Silicon anisotropic etching in KOHand TMAHwith modified surface tension, Procedia Chemistry, 1(1), 774(2009)

11 Les M. Landsberger, Sasan Naseh, Mojtaba Kahrizi, Makarand Paranjape, On hillocks generated during anisotropic etching of Si in TMAH, Microelectromechanical Systems, 5(2), 106(1996)

12 Song-Sheng Tan, M Reed, Hongtao Han, R Boudreau, Process induced hillocks defects on anisotropic etched silicon, Micromechanics and Microengineering, 4(3), 233(1994)

13 RONG Yonghua, Introduction to the Analysis of Electron Microscopy (Beijing, Higher Education Press, 2006) p.428–437

(戎咏华,  分析电子显微学导论  (北京, 高等教育出版社, 2006) p.428--437)
[1] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[5] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[6] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[7] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[8] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[9] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[10] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[11] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
[12] 李修贤, 邱万奇, 焦东玲, 钟喜春, 刘仲武. α籽晶促进低温反应溅射沉积α-Al2O3薄膜[J]. 材料研究学报, 2022, 36(1): 8-12.
[13] 范金辉, 李鹏飞, 梁晓军, 梁建平, 徐长征, 蒋力, 叶祥熙, 李志军. 镍-不锈钢复合板轧制过程中界面的结合机制[J]. 材料研究学报, 2021, 35(7): 493-500.
[14] 卢壹梁, 杜瑶, 王成, 辛丽, 朱圣龙, 王福会. 纳米Al2O3TiO2改性有机硅涂层对304不锈钢高温氧化行为的影响[J]. 材料研究学报, 2021, 35(6): 458-466.
[15] 张会臣, 漆雪莲. 跑合过程引发钛合金水基润滑的超低摩擦特性[J]. 材料研究学报, 2021, 35(5): 349-356.