Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (7): 521-532    DOI: 10.11901/1005.3093.2024.424
  研究论文 本期目录 | 过刊浏览 |
GCr15轴承钢中渗碳体粒径的调控对其硬度的影响
刘晶1, 李云杰1, 秦煜2(), 李琳琳1()
1.东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819
2.中国工程物理研究院机械制造工艺研究所 绵阳 621900
Influence of Particle Size Control of Cementite on Hardness of GCr15 Bearing Steel
LIU Jing1, LI Yunjie1, QIN Yu2(), LI Linlin1()
1.State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
2.Institute of Machinery Manufacturing Technology, China Academy of Engineering Physics, Mianyang 621900, China
引用本文:

刘晶, 李云杰, 秦煜, 李琳琳. GCr15轴承钢中渗碳体粒径的调控对其硬度的影响[J]. 材料研究学报, 2025, 39(7): 521-532.
Jing LIU, Yunjie LI, Yu QIN, Linlin LI. Influence of Particle Size Control of Cementite on Hardness of GCr15 Bearing Steel[J]. Chinese Journal of Materials Research, 2025, 39(7): 521-532.

全文: PDF(20887 KB)   HTML
摘要: 

对GCr15轴承钢进行淬火和高温回火球化处理,再进行淬火和低温回火,研究了这种钢的组织演变和碳化物的粗化机理及其对硬度的影响。结果表明,对这种钢进行930 ℃奥氏体化加水/油淬后进行700 ℃高温回火球化处理,随着回火时间(6、12、24、48 h)的延长球化渗碳体粗大和尺寸均匀,其粗化遵循Ostwald熟化理论;二次淬火(840 ℃保温10 min)和低温回火(160 ℃保温2 h)后部分渗碳体溶解使其含量降低,而在两相区奥氏体化过程中碳化物颗粒溶解且因Ostwald熟化而粗化,使渗碳体的粒径略有增大。用简单高效的淬火和高温回火,可调控渗碳体的球化和粒径。在球化过程中较长的高温回火时间使较大的渗碳体增多,较多的渗碳体在二次淬火和低温回火过程中保留下来,使其平均粒径较大。同时,奥氏体因碳含量较低而更易于转变为马氏体。碳化物的尺寸和间距的增大降低了硬化效果,而马氏体增多则缓解了硬度的降低。

关键词 金属材料GCr15轴承钢渗碳体球化处理淬火回火    
Abstract

By spheroiding the GCr15 bearing steel with quenching, high-temperature tempering, secondary quenching and low-temperature tempering, the associated evolution mechanism of the microstructure, especially the coarsening of carbides, and its correlation with hardness was investigated here. The results show that after austenitization at 930 oC followed by water/oil quenching and subsequent high-temperature tempering at 700 oC for spheroidization, the cementite particulates continuously coarsened and their size became more uniform as the time of high-temperature tempering time (6, 12, 24, 48 h) increased. The coarsening of spheroidal cementite followed the Ostwald ripening theory. After the secondary quenching (holding at 840 oC for 10 min) and low-temperature tempering (holding at 160 oC for 2 h), part of the cementite dissolved and its content decreased. Due to the dissolving and coarsening of cementite during the austenitization process in the two-phase region, the average size of the cementite was increased compared to that just after the spheroiding. The simple and efficient quenching and high-temperature tempering processes have achieved spheroidization and size control of the cementite. Longer high-temperature tempering time during the spheroidization process resulted in more large cementite particles, nevertheless, more of which could retain for a longer period during the secondary quenching and low-temperature tempering process. This led to a larger average size of the cementite, and at the same time, the lower carbon content in the austenite made it easier to transform into martensite. The increase of carbide size and spacing weakened the hardening effect, while the increase in martensite content could alleviate the decrease in hardness. The hardness of the spheroidized structure and of the secondary quenching and tempering structure basically met the hardness requirements of GCr15 bearing steel. These research can provide a credible reference for the design of the microstructure and properties, as well as the process design of GCr15 bearing steel.

Key wordsmetallic materials    GCr15 bearing steel    cementite    spheroidization    quenching    tempering
收稿日期: 2024-10-15     
ZTFLH:  TG161  
基金资助:国家自然科学基金(52101158);国家自然科学基金(52371101)
通讯作者: 秦煜,工程师,yuqin0081@163.com,研究方向为轴承钢组织调控;
李琳琳,教授,lill@ral.neu.edu.cn,研究方向为高熵合金与钢铁材料
Corresponding author: QIN Yu, Tel: (0816)2490543, E-mail: yuqin0081@163.com;
LI Linlin, Tel: (024)83686917, E-mail: lill@ral.neu.edu.cn
作者简介: 刘 晶,女,2000年生,硕士
SampleQuenchingTemperingQuenchingTempering
SP1930 oC × 1 h + oil quenching700 oC × 6 h + oil quenching
SP2930 oC × 1 h + oil quenching700 oC × 12 h + oil quenching
SP3930 oC × 1 h + oil quenching700 oC × 24 h + oil quenching
SP4930 oC × 1 h + oil quenching700 oC × 48 h+ oil quenching
QT1930 oC × 1 h + oil quenching700 oC × 6 h + oil quenching840 oC × 10 min + oil quenching160 oC × 2 h + air cooling
QT2930 oC × 1 h + oil quenching700 oC × 12 h + oil quenching840 oC × 10 min + oil quenching160 oC × 2 h + air cooling
QT3930 oC × 1 h + oil quenching700 oC × 24 h + oil quenching840 oC × 10 min + oil quenching160 oC × 2 h + air cooling
QT4930 oC × 1 h + oil quenching700 oC × 48 h + oil quenching840 oC × 10 min + oil quenching160 oC × 2 h + air cooling
表1  试样的编号和热处理工艺
图1  热锻态GCr15轴承钢的微观组织
图2  一次淬火+高温回火保温不同时间后GCr15轴承钢的SEM照片
图3  一次淬火+高温回火保温不同时间后GCr15轴承钢的XRD谱
图4  一次淬火+高温回火保温不同时间后GCr15轴承钢中球状渗碳体的粒径统计
图5  二次淬火+低温回火后GCr15轴承钢的SEM照片
图6  二次淬火+低温回火后GCr15轴承钢的XRD谱
SampleVθVγVM
QT14.228.467.4
QT24.922.472.7
QT36.419.474.2
QT46.716.177.2
表2  二次淬火+低温回火后GCr15轴承钢中各相的含量
图7  二次淬火+低温回火后GCr15轴承钢中球状渗碳体的粒径统计
图8  一次淬火+高温回火保温不同时间后GCr15轴承钢的EBSD相组成
图9  二次淬火+低温回火后GCr15轴承钢中元素的分布
图10  GCr15轴承钢的维氏硬度
图11  球状渗碳体平均半径的立方与高温回火时间的拟合曲线
图12  不同热处理的GCr15轴承钢的平均粒径
图13  硬度与马氏体含量和渗碳体尺寸的关系
[1] Zhang Z, Lan P, Wang P, et al. Semi-macrosegregation and carbide banding in high-carbon chromium bearing steels: Characteristics, evolution, and control [J]. J. Mater. Res. Technol., 2023, 27: 3517
[2] Wang K, Hu F, Zhou W, et al. Research status and development trend of bearing steel [J]. China Metall., 2020, 30(9): 119
[2] 王 坤, 胡 锋, 周 雯 等. 轴承钢研究现状及发展趋势 [J]. 中国冶金, 2020, 30(9): 119
[3] Li N, Cui C X, Zhao Y Q, et al. Structure and properties of GCr15 modified by multiphase ceramic nanoparticles/Fe-C composite inoculants [J]. Mat. Sci. Eng., 2018, 738A: 63
[4] Li Y Z, Liu S F, Xue T, et al. Comparison of wear behavior of GCr15 bearing steel prepared by selective laser melting (SLM) and electron beam melting (EBM) [J]. Mater. Lett., 2021, 305: 130726
[5] Fu J W. Microstructure and corrosion behavior of hot-rolled GCr15 bearing steel [J]. Appl. Phys., 2016, 122A(4) : 416
[6] Zhang F C, Yang Z N. Development of and perspective on high-performance nanostructured bainitic bearing steel [J]. Engineering, 2019, 5(2): 319
[7] Bhadeshia H K D H. Steels for bearings [J]. Prog. Mater. Sci., 2012, 57(2): 268
[8] Zhao X Y, Zhao X M, Dong C Y, et al. Effect of prior microstructures on cementite dissolution behavior during subcritical annealing of high carbon steels [J]. Met. Mater. Int., 2022, 28: 1315
[9] Yang H B, Wang Y M, Luo L, et al. Ostwald growth of carbides in cyclic annealing process of GCr15 bearing steel [J]. Adv. Mat. Res., 2011, 374-377: 1805
[10] Nagao A, Hayashi K, Oi K, et al. Refinement of cementite in high strength steel plates by rapid heating and tempering [J]. Mater. Sci. Forum., 2007, 539-543: 4720
[11] Revilla C, López B, Rodriguez-Ibabe J M. Carbide size refinement by controlling the heating rate during induction tempering in a low alloy steel [J]. Mater. Des., 2014, 62: 296
[12] Qin Y M, Li Y G, Zhang M, et al. Effect of refined cementite on nanostructured bainitic bearing steel [J]. China Metall., 2020, 30(9): 104
[12] 秦羽满, 李艳国, 张 明 等. 细化渗碳体对高碳纳米贝氏体轴承钢的影响 [J]. 中国冶金, 2020, 30(9): 104
doi: 10.13228/j.boyuan.issn1006-9356.20200290
[13] Zeng Y Q. Spheroidizing treatment and austenitizing research of GCr15 bearing steel [D]. Shanghai: Shanghai Jiao Tong University, 2015
[13] 曾伊琪. GCr15轴承钢球化处理工艺及其奥氏体化研究 [D]. 上海: 上海交通大学, 2015
[14] Ghanbariha M, Farvizi M, Ataie S A, et al. Effect of YSZ particle size and content on microstructure, mechanical and tribological properties of (CoCrFeNiAl)1- x (YSZ) x high entropy alloy composites [J]. Met. Mater. Int., 2024, 30(9): 2523
[15] Kumar K R, Mohanasundaram K M, Arumaikkannu G, et al. Effect of particle size on mechanical properties and tribological behaviour of aluminium/fly ash composites [J]. Sci. Eng. Compos. Mater., 2012, 19(3): 247
[16] Saha D C, Biro E, Gerlich A P, et al. Effects of tempering mode on the structural changes of martensite [J]. Mat. Sci. Eng., 2016, 673A: 467
[17] Nam W J, Bae C M. Coarsening behavior of cementite particles at a subcritical temperature in a medium carbon steel [J]. Scr. Mater., 1999, 41(3): 313
[18] Su S R, Song R B, Chen C, et al. The novel process of spheroidizing-critical annealing used to optimize the properties of carburized steel and its effect on hardening mechanism of quenching and tempering [J]. Mater. Sci. Eng., 2019, 765A: 138322
[19] Liu Z H, Li Y H, Liu Y, et al. Carbide evolution behavior of GCr15 bearing steel during aging process [J]. Chin. J. Mater. Res., 2024, 38(2): 130
doi: 10.11901/1005.3093.2023.169
[19] 刘震寰, 李勇翰, 刘 洋 等. GCr15轴承钢时效过程碳化物的演化行为 [J]. 材料研究学报, 2024, 38(2): 130
doi: 10.11901/1005.3093.2023.169
[20] Tanaka M, Choi C S. The effects of carbon contents and MS temperatures on the hardness of martensitic Fe-Ni-C alloys [J]. Trans. Iron Steel Inst. Jpn., 1972, 12: 16
[21] Ge L L, Zhu J W, Liu Y N. Investigation on spheroidized microstructure of 1.41%C ultra-high carbon steel after quenching and high tempering treatment [J]. Ordnance Mater. Sci. Eng., 2010, 33(1): 9
[21] 葛利玲, 朱杰武, 柳永宁. 1.41%C超高碳钢淬火高温回火球化组织的研究 [J]. 兵器材料科学与工程, 2010, 33(1): 9
[22] Qin Y, Mayweg D, Tung P Y, et al. Mechanism of cementite decomposition in 100Cr6 bearing steels during high pressure torsion [J]. Acta Mater., 2020, 201: 79
doi: 10.1016/j.actamat.2020.09.069
[23] Cui Z Q, Qin Y C. Metallography and Heat Treatment [M]. 2nd ed. Beijing: China Machine Press, 2007: 179
[23] 崔忠圻, 覃耀春. 金属学与热处理 [M]. 2版. 北京: 机械工业出版社, 2007: 179
[24] Cao Y J, Sun J Q, Ma F, et al. Effect of the microstructure and residual stress on tribological behavior of induction hardened GCr15 steel [J]. Tribol. Int., 2017, 115: 108
[25] Baldan A. Review progress in Ostwald ripening theories and their applications to nickel-base superalloys Part I: Ostwald ripening theories [J]. J. Mater. Sci., 2002, 37: 2171
[26] Wu Z F, Liu C, Zhou F. The effect of volume fraction of secondary phase on Ostwald ripening in two phase system [J]. Powder Metall. Ind., 2016, 26(5): 43
[26] 吴志方, 刘 超, 周 帆. 两相体系中第二相体积分数对其Ostwald熟化的影响 [J]. 粉末冶金工业, 2016, 26(5): 43
[27] Lifshitz I M, Slyozov V V. The kinetics of precipitation from supersaturated solid solutions [J]. J. Phys. Chem. Solids, 1961, 19: 35
[28] Wagner C. Theorie der alterung von niederschlägen durch umlösen (Ostwald‐Reifung) [J]. Zei. Elektrochem. Ber. Bunsen. Physikal, Chem., 1961, 65(7-8): 581
[29] Ardell A J. The effect of volume fraction on particle coarsening: theoretical considerations [J]. Acta Metall., 1972, 20(1): 61
[30] Brailsford A D, Wynblatt P. The dependence of Ostwald ripening kinetics on particle volume fraction [J]. Acta Metall., 1979, 27(3): 489
[31] Davies C K L, Nash P, Stevens R N. The effect of volume fraction of precipitate on Ostwald ripening [J]. Acta Metall., 1980, 28(2): 179
[32] Tsumuraya K, Miyata Y. Coarsening models incorporating both diffusion geometry and volume fraction of particles [J]. Acta Metall., 1983, 31(3): 437
[33] Marqusee J A, Ross J. Kinetics of phase transitions: theory of Ostwald ripening [J]. J. Chem. Phys., 1983, 79(1): 373
[34] Tokuyama M, Kawazaki K. Statistical-mechanical theory of coarsening of spherical droplets [J]. Physica, 1984, 123A(2-3) : 386
[35] Voorhees P W, Glicksman M E. Ostwald ripening during liquid phase sintering-effect of volume fraction on coarsening kinetics [J]. Metall. Trans., 1984, 15A(6) : 1081
[36] Enomoto Y, Tokuyama M, Kawasaki K. Finite volume fraction effects on Ostwald ripening [J]. Acta Metall., 1986, 34(11): 2119
[37] Yao J H, Elder K R, Guo H, et al. Theory and simulation of Ostwald ripening [J]. Phys. Rev., 1993, 47B(21) : 14110
[38] Zhang J L, Guo Q Y, Liu Y C, et al. Effect of cold rolling and first precipitates on the coarsening behavior of γ″-phases in Inconel 718 alloy [J]. Int. J. Miner. Metall. Mater., 2016, 23: 1087
[39] Theska F, Stanojevic A, Oberwinkler B, et al. On conventional versus direct ageing of Alloy 718 [J]. Acta Mater., 2018, 156: 116
[40] Seyhan I, Ratke L, Bender W, et al. Ostwald ripening of solid-liquid Pb-Sn dispersions [J]. Metall. Mater. Trans., 1996, 27A(9) : 2470
[41] Wu Z F, Zeng M Q, Ouyang L Z, et al. Ostwald ripening of Pb nanocrystalline phase in mechanically milled Al-Pb alloys and the influence of Cu additive [J]. Scr. Mater., 2005, 53(5): 529
[42] Song W W, Choi P P, Inden G, et al. On the spheroidized carbide dissolution and elemental partitioning in high carbon bearing steel 100Cr6 [J]. Metall. Mater. Trans., 2014, 45A(2) : 595
[43] Liu Z K, Ågren J. Morphology of cementite decomposition in an Fe-Cr-C alloy [J]. Metall. Trans. A., 1991, 22(8): 1753
[44] Epp J, Surm H, Kessler O, et al. In situ X-ray phase analysis and computer simulation of carbide dissolution of ball bearing steel at different austenitizing temperatures [J]. Acta Mater., 2007, 55(17): 5959
[45] Jeong D H, Erb U, Aust K T, et al. The relationship between hardness and abrasive wear resistance of electrodeposited nanocrystalline Ni-Pcoatings [J]. Scr. Mater., 2003, 48(8): 1067
[1] 张宁, 王耀奇, 杨毅, 慕延宏, 李震, 陈志勇. Ti65钛合金的超塑变形和微观组织演变[J]. 材料研究学报, 2025, 39(7): 489-498.
[2] 韩杨燚, 张腾昊, 张可, 赵时雨, 汪创伟, 余强, 李景辉, 孙新军. 终冷温度对Ti-V-Mo复合微合金钢析出相、组织和硬度的影响[J]. 材料研究学报, 2025, 39(7): 533-541.
[3] 刘志华, 王明月, 李易娟, 丘一帆, 李翔, 苏伟钊. 1T/2H O-MoS2@S-pCN催化剂的制备和性能[J]. 材料研究学报, 2025, 39(7): 551-560.
[4] 韩磊磊, 王文涛, 吴赟, 陈嘉俊, 赵勇. 无氟化学溶液法制备YBCO超导焊料的高温生长工艺研究[J]. 材料研究学报, 2025, 39(6): 474-480.
[5] 姜爱龙, 谭炳治, 庞建超, 石锋, 张允继, 邹成路, 李守新, 伍启华, 李小武, 张哲峰. 蠕墨铸铁RuT300RuT450的低周疲劳性能和损伤机制[J]. 材料研究学报, 2025, 39(6): 443-454.
[6] 杨亮, 揣荣岩, 薛丹, 刘芳, 刘昆霖, 刘畅, 蔡桂喜. SUS301L不锈钢电阻点焊接头的微观组织和力学性能研究[J]. 材料研究学报, 2025, 39(6): 435-442.
[7] 王恒霖, 丁汉林, 柴锋, 罗小兵, 王子健, 项重辰. 调质热处理对不同轧制温度的含Cu低合金高强钢力学性能的影响[J]. 材料研究学报, 2025, 39(6): 401-412.
[8] 袁新雨, 史非, 刘敬肖, 张皓杰, 杨大毅, 王美玉, 任明. Er2O3 对二硅酸锂玻璃陶瓷的结构和性能的影响[J]. 材料研究学报, 2025, 39(6): 455-462.
[9] 李海斌, 徐惠婷, 唐伟, 吕海波, 帅美荣. 热轧碳钢/不锈钢复合板结合界面电解腐蚀的毛细效应[J]. 材料研究学报, 2025, 39(5): 362-370.
[10] 邱玮, 李玉林, 闫瑞, 李雅文, 陈维, 甘浪, 任延杰, 陈荐. Al对镁空气电池用挤压态Mg-Al-Ca-Mn合金阳极腐蚀和放电性能的影响[J]. 材料研究学报, 2025, 39(5): 389-400.
[11] 吴玉程, 左彤, 谭晓月, 朱晓勇, 刘家琴. 第一壁自钝化W-Cr-Zr合金的氧化行为和氧化层结构[J]. 材料研究学报, 2025, 39(5): 343-352.
[12] 任学昌, 安菊, 付宁, 姚小庆, 杨镇瑜, 陈泓锦. 在模拟太阳光下溶剂热时长对MIL-88A(Fe)活化过一硫酸盐降解罗丹明B催化性能的影响[J]. 材料研究学报, 2025, 39(5): 329-342.
[13] 符纯国, 徐世伟, 杨晓益, 李萌蘖. 焊接热源模式对5083-H111铝合金接头性能的影响[J]. 材料研究学报, 2025, 39(4): 305-313.
[14] 陈室雨, 李卫, 旷海燕, 高绍巍, 庞东方. 一种稀土Lu3+ 掺杂无铅压电陶瓷的介电、铁电和压电性能[J]. 材料研究学报, 2025, 39(4): 272-280.
[15] 胥聪敏, 孙姝雯, 朱文胜, 陈志强, 李城臣. 三元复配杀菌剂对P110钢腐蚀行为的影响[J]. 材料研究学报, 2025, 39(4): 281-288.