|
|
GCr15轴承钢中渗碳体粒径的调控对其硬度的影响 |
刘晶1, 李云杰1, 秦煜2( ), 李琳琳1( ) |
1.东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819 2.中国工程物理研究院机械制造工艺研究所 绵阳 621900 |
|
Influence of Particle Size Control of Cementite on Hardness of GCr15 Bearing Steel |
LIU Jing1, LI Yunjie1, QIN Yu2( ), LI Linlin1( ) |
1.State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China 2.Institute of Machinery Manufacturing Technology, China Academy of Engineering Physics, Mianyang 621900, China |
引用本文:
刘晶, 李云杰, 秦煜, 李琳琳. GCr15轴承钢中渗碳体粒径的调控对其硬度的影响[J]. 材料研究学报, 2025, 39(7): 521-532.
Jing LIU,
Yunjie LI,
Yu QIN,
Linlin LI.
Influence of Particle Size Control of Cementite on Hardness of GCr15 Bearing Steel[J]. Chinese Journal of Materials Research, 2025, 39(7): 521-532.
[1] |
Zhang Z, Lan P, Wang P, et al. Semi-macrosegregation and carbide banding in high-carbon chromium bearing steels: Characteristics, evolution, and control [J]. J. Mater. Res. Technol., 2023, 27: 3517
|
[2] |
Wang K, Hu F, Zhou W, et al. Research status and development trend of bearing steel [J]. China Metall., 2020, 30(9): 119
|
[2] |
王 坤, 胡 锋, 周 雯 等. 轴承钢研究现状及发展趋势 [J]. 中国冶金, 2020, 30(9): 119
|
[3] |
Li N, Cui C X, Zhao Y Q, et al. Structure and properties of GCr15 modified by multiphase ceramic nanoparticles/Fe-C composite inoculants [J]. Mat. Sci. Eng., 2018, 738A: 63
|
[4] |
Li Y Z, Liu S F, Xue T, et al. Comparison of wear behavior of GCr15 bearing steel prepared by selective laser melting (SLM) and electron beam melting (EBM) [J]. Mater. Lett., 2021, 305: 130726
|
[5] |
Fu J W. Microstructure and corrosion behavior of hot-rolled GCr15 bearing steel [J]. Appl. Phys., 2016, 122A(4) : 416
|
[6] |
Zhang F C, Yang Z N. Development of and perspective on high-performance nanostructured bainitic bearing steel [J]. Engineering, 2019, 5(2): 319
|
[7] |
Bhadeshia H K D H. Steels for bearings [J]. Prog. Mater. Sci., 2012, 57(2): 268
|
[8] |
Zhao X Y, Zhao X M, Dong C Y, et al. Effect of prior microstructures on cementite dissolution behavior during subcritical annealing of high carbon steels [J]. Met. Mater. Int., 2022, 28: 1315
|
[9] |
Yang H B, Wang Y M, Luo L, et al. Ostwald growth of carbides in cyclic annealing process of GCr15 bearing steel [J]. Adv. Mat. Res., 2011, 374-377: 1805
|
[10] |
Nagao A, Hayashi K, Oi K, et al. Refinement of cementite in high strength steel plates by rapid heating and tempering [J]. Mater. Sci. Forum., 2007, 539-543: 4720
|
[11] |
Revilla C, López B, Rodriguez-Ibabe J M. Carbide size refinement by controlling the heating rate during induction tempering in a low alloy steel [J]. Mater. Des., 2014, 62: 296
|
[12] |
Qin Y M, Li Y G, Zhang M, et al. Effect of refined cementite on nanostructured bainitic bearing steel [J]. China Metall., 2020, 30(9): 104
|
[12] |
秦羽满, 李艳国, 张 明 等. 细化渗碳体对高碳纳米贝氏体轴承钢的影响 [J]. 中国冶金, 2020, 30(9): 104
doi: 10.13228/j.boyuan.issn1006-9356.20200290
|
[13] |
Zeng Y Q. Spheroidizing treatment and austenitizing research of GCr15 bearing steel [D]. Shanghai: Shanghai Jiao Tong University, 2015
|
[13] |
曾伊琪. GCr15轴承钢球化处理工艺及其奥氏体化研究 [D]. 上海: 上海交通大学, 2015
|
[14] |
Ghanbariha M, Farvizi M, Ataie S A, et al. Effect of YSZ particle size and content on microstructure, mechanical and tribological properties of (CoCrFeNiAl)1- x (YSZ) x high entropy alloy composites [J]. Met. Mater. Int., 2024, 30(9): 2523
|
[15] |
Kumar K R, Mohanasundaram K M, Arumaikkannu G, et al. Effect of particle size on mechanical properties and tribological behaviour of aluminium/fly ash composites [J]. Sci. Eng. Compos. Mater., 2012, 19(3): 247
|
[16] |
Saha D C, Biro E, Gerlich A P, et al. Effects of tempering mode on the structural changes of martensite [J]. Mat. Sci. Eng., 2016, 673A: 467
|
[17] |
Nam W J, Bae C M. Coarsening behavior of cementite particles at a subcritical temperature in a medium carbon steel [J]. Scr. Mater., 1999, 41(3): 313
|
[18] |
Su S R, Song R B, Chen C, et al. The novel process of spheroidizing-critical annealing used to optimize the properties of carburized steel and its effect on hardening mechanism of quenching and tempering [J]. Mater. Sci. Eng., 2019, 765A: 138322
|
[19] |
Liu Z H, Li Y H, Liu Y, et al. Carbide evolution behavior of GCr15 bearing steel during aging process [J]. Chin. J. Mater. Res., 2024, 38(2): 130
doi: 10.11901/1005.3093.2023.169
|
[19] |
刘震寰, 李勇翰, 刘 洋 等. GCr15轴承钢时效过程碳化物的演化行为 [J]. 材料研究学报, 2024, 38(2): 130
doi: 10.11901/1005.3093.2023.169
|
[20] |
Tanaka M, Choi C S. The effects of carbon contents and MS temperatures on the hardness of martensitic Fe-Ni-C alloys [J]. Trans. Iron Steel Inst. Jpn., 1972, 12: 16
|
[21] |
Ge L L, Zhu J W, Liu Y N. Investigation on spheroidized microstructure of 1.41%C ultra-high carbon steel after quenching and high tempering treatment [J]. Ordnance Mater. Sci. Eng., 2010, 33(1): 9
|
[21] |
葛利玲, 朱杰武, 柳永宁. 1.41%C超高碳钢淬火高温回火球化组织的研究 [J]. 兵器材料科学与工程, 2010, 33(1): 9
|
[22] |
Qin Y, Mayweg D, Tung P Y, et al. Mechanism of cementite decomposition in 100Cr6 bearing steels during high pressure torsion [J]. Acta Mater., 2020, 201: 79
doi: 10.1016/j.actamat.2020.09.069
|
[23] |
Cui Z Q, Qin Y C. Metallography and Heat Treatment [M]. 2nd ed. Beijing: China Machine Press, 2007: 179
|
[23] |
崔忠圻, 覃耀春. 金属学与热处理 [M]. 2版. 北京: 机械工业出版社, 2007: 179
|
[24] |
Cao Y J, Sun J Q, Ma F, et al. Effect of the microstructure and residual stress on tribological behavior of induction hardened GCr15 steel [J]. Tribol. Int., 2017, 115: 108
|
[25] |
Baldan A. Review progress in Ostwald ripening theories and their applications to nickel-base superalloys Part I: Ostwald ripening theories [J]. J. Mater. Sci., 2002, 37: 2171
|
[26] |
Wu Z F, Liu C, Zhou F. The effect of volume fraction of secondary phase on Ostwald ripening in two phase system [J]. Powder Metall. Ind., 2016, 26(5): 43
|
[26] |
吴志方, 刘 超, 周 帆. 两相体系中第二相体积分数对其Ostwald熟化的影响 [J]. 粉末冶金工业, 2016, 26(5): 43
|
[27] |
Lifshitz I M, Slyozov V V. The kinetics of precipitation from supersaturated solid solutions [J]. J. Phys. Chem. Solids, 1961, 19: 35
|
[28] |
Wagner C. Theorie der alterung von niederschlägen durch umlösen (Ostwald‐Reifung) [J]. Zei. Elektrochem. Ber. Bunsen. Physikal, Chem., 1961, 65(7-8): 581
|
[29] |
Ardell A J. The effect of volume fraction on particle coarsening: theoretical considerations [J]. Acta Metall., 1972, 20(1): 61
|
[30] |
Brailsford A D, Wynblatt P. The dependence of Ostwald ripening kinetics on particle volume fraction [J]. Acta Metall., 1979, 27(3): 489
|
[31] |
Davies C K L, Nash P, Stevens R N. The effect of volume fraction of precipitate on Ostwald ripening [J]. Acta Metall., 1980, 28(2): 179
|
[32] |
Tsumuraya K, Miyata Y. Coarsening models incorporating both diffusion geometry and volume fraction of particles [J]. Acta Metall., 1983, 31(3): 437
|
[33] |
Marqusee J A, Ross J. Kinetics of phase transitions: theory of Ostwald ripening [J]. J. Chem. Phys., 1983, 79(1): 373
|
[34] |
Tokuyama M, Kawazaki K. Statistical-mechanical theory of coarsening of spherical droplets [J]. Physica, 1984, 123A(2-3) : 386
|
[35] |
Voorhees P W, Glicksman M E. Ostwald ripening during liquid phase sintering-effect of volume fraction on coarsening kinetics [J]. Metall. Trans., 1984, 15A(6) : 1081
|
[36] |
Enomoto Y, Tokuyama M, Kawasaki K. Finite volume fraction effects on Ostwald ripening [J]. Acta Metall., 1986, 34(11): 2119
|
[37] |
Yao J H, Elder K R, Guo H, et al. Theory and simulation of Ostwald ripening [J]. Phys. Rev., 1993, 47B(21) : 14110
|
[38] |
Zhang J L, Guo Q Y, Liu Y C, et al. Effect of cold rolling and first precipitates on the coarsening behavior of γ″-phases in Inconel 718 alloy [J]. Int. J. Miner. Metall. Mater., 2016, 23: 1087
|
[39] |
Theska F, Stanojevic A, Oberwinkler B, et al. On conventional versus direct ageing of Alloy 718 [J]. Acta Mater., 2018, 156: 116
|
[40] |
Seyhan I, Ratke L, Bender W, et al. Ostwald ripening of solid-liquid Pb-Sn dispersions [J]. Metall. Mater. Trans., 1996, 27A(9) : 2470
|
[41] |
Wu Z F, Zeng M Q, Ouyang L Z, et al. Ostwald ripening of Pb nanocrystalline phase in mechanically milled Al-Pb alloys and the influence of Cu additive [J]. Scr. Mater., 2005, 53(5): 529
|
[42] |
Song W W, Choi P P, Inden G, et al. On the spheroidized carbide dissolution and elemental partitioning in high carbon bearing steel 100Cr6 [J]. Metall. Mater. Trans., 2014, 45A(2) : 595
|
[43] |
Liu Z K, Ågren J. Morphology of cementite decomposition in an Fe-Cr-C alloy [J]. Metall. Trans. A., 1991, 22(8): 1753
|
[44] |
Epp J, Surm H, Kessler O, et al. In situ X-ray phase analysis and computer simulation of carbide dissolution of ball bearing steel at different austenitizing temperatures [J]. Acta Mater., 2007, 55(17): 5959
|
[45] |
Jeong D H, Erb U, Aust K T, et al. The relationship between hardness and abrasive wear resistance of electrodeposited nanocrystalline Ni-Pcoatings [J]. Scr. Mater., 2003, 48(8): 1067
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|