Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (6): 401-412    DOI: 10.11901/1005.3093.2024.245
  研究论文 本期目录 | 过刊浏览 |
调质热处理对不同轧制温度的含Cu低合金高强钢力学性能的影响
王恒霖1, 丁汉林1(), 柴锋2, 罗小兵2, 王子健1, 项重辰1
1.苏州大学沙钢钢铁学院 苏州 215006
2.钢铁研究总院 工程用钢研究所 北京 100081
Effect of Quenched-tempered Heat Treatment on Microstructure and Precipitation of High Strength Low Alloy Steel Containing Copper After Being Hot Rolled at Different Temperatures
WANG Henglin1, DING Hanlin1(), CHAI Feng2, LUO Xiaobing2, WANG Zijian1, XIANG Chongchen1
1.School of Iron and Steel, Soochow University, Suzhou 215006, China
2.Department of Structure Steels, Central Iron and Steel Research Institute, Beijing 100081, China
引用本文:

王恒霖, 丁汉林, 柴锋, 罗小兵, 王子健, 项重辰. 调质热处理对不同轧制温度的含Cu低合金高强钢力学性能的影响[J]. 材料研究学报, 2025, 39(6): 401-412.
Henglin WANG, Hanlin DING, Feng CHAI, Xiaobing LUO, Zijian WANG, Chongchen XIANG. Effect of Quenched-tempered Heat Treatment on Microstructure and Precipitation of High Strength Low Alloy Steel Containing Copper After Being Hot Rolled at Different Temperatures[J]. Chinese Journal of Materials Research, 2025, 39(6): 401-412.

全文: PDF(28951 KB)   HTML
摘要: 

在不同温度轧制含Cu低合金高强钢并使用SEM、TEM、STEM-HAADF和SAXS等手段对其表征,研究了调质热处理对其显微组织和力学性能的影响。研究表明,在不同温度轧制的热轧态含Cu低合金高强钢的组织为铁素体+贝氏体,调质热处理后其基体组织转变为回火马氏体,并析出了大量弥散分布的纳米富Cu相粒子和Cr碳化物。调质态含Cu低合金高强钢中的富Cu相粒子以孪晶9R型和非孪晶9R型方式析出。调质处理显著提高了这种钢的屈服强度和低温冲击韧性(尤其是在-84 ℃),但是其抗拉强度略有降低。富Cu相粒子的析出是这种钢综合力学性能提高的主要原因。

关键词 金属材料轧制温度调质热处理富Cu析出相    
Abstract

The effect of heat treatments including quenching and tempering on the microstructure and mechanical properties of Cu-bearing high strength low alloy steel after being hot rolled at different temperatures were studied by SEM, TEM, STEM-HAADF and SASX. The results show that after being hot rolled at different temperatures, the test steels presented a microstructure of ferrite + bainite, however, which after quenching and tempering transformed to tempered martensite and a large amount of dispersed nano precipitates as their primary microstructure characteristics. The nano precipitates mainly consist of Cu-rich particles and Cr carbides. The results of TEM observation show that two types of precipitation modes, i.e. 9R precipitates with or without twins, can be found for the precipitation of Cu-rich particles in the test steel. The ambient temperature yield strength and low temperature impact toughness (especially at -84 oC) of the test steel can be significantly improved by quenching and tempering treatment, while the ultimate tensile strength is slightly decreased. The improvement in comprehensive mechanical properties of the test steel may be mainly ascribed to the precipitation of Cu-rich particles.

Key wordsmetallic materials    rolling temperature    quenched-tempered heat treatment    Cu-rich precipitation
收稿日期: 2024-05-31     
ZTFLH:  TG335.3  
基金资助:国家自然科学基金(52174367);江苏省研究生科研实践创新项目(KYCX23_3239)
通讯作者: 丁汉林,教授,dinghanlin@suda.edu.cn,研究方向为高性能轻型金属材料开发与应用、金属材料强韧化机理
Corresponding author: DING Hanlin, Tel: 18896736263, E-mail: dinghanlin@suda.edu.cn
作者简介: 王恒霖,男,1996年生,博士生
CSiMnCrNi+Cu+MoTiNbFe
0.050.180.640.623.5~4.00.0140.027Bal.
表1  实验用钢的化学成分
SamplesR1R2R3R4R5R6
StrengthRp0.2 / MPa544563544576551571
Rm / MPa796805795827805820
A / %162117211921
Z / %777674737673
Impact energyAKv(-40 oC) / J1571291001264936
AKv(-84 oC) / J552814221413
表2  热轧态R1~R6试样的力学性能
SamplesT1T2T3T4T5T6
StrengthRp0.2 / MPa686717680700690691
Rm / MPa727751725736735730
A / %18.52118212021
Z / %7574.573.573.574.573
Impact energyAKv(-40 oC) / J236264264258267254
AKv(-84 oC) / J213201216198182199
表3  调质态T1~T6试样的力学性能
图1  热轧态试样和调制态试样的显微组织
图2  用JMatPro软件计算的实验用的相变温度和第二相析出温度
图3  R1和R6试样中析出相的TEM照片
图4  T1和T6试样的基体组织和析出相的TEM照片
图5  T1试样的STEM照片和EDS能谱分析
图6  T6试样中第二相粒子的STEM照片和EDS能谱分析
图7  R1试样中析出相的TEM照片和EDS能谱分析
图8  T1和T6试样的选区电子衍射(SAED)照片
图9  T1和T6试样的STEM-HRTEM图像和FFT图
图10  T1和T6试样的小角X射线散射(SAXS)谱
1 Jiao Z B, Luan J H, Zhang Z W, et al. Synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of high-strength steels[J]. Acta Mater., 2013, 61: 5996
2 Jiao Z B, Luan J H, Miller M K, et al. Precipitation mechanism and mechanical properties of an ultra-high strength steel hardened by nanoscale NiAl and Cu particles[J]. Acta Mater., 2015, 97: 58
3 Kong H J, Xu C, Bu C C, et al. Hardening mechanisms and impact toughening of a high-strength steel containing low Ni and Cu additions[J]. Acta Mater., 2019, 172: 150
doi: 10.1016/j.actamat.2019.04.041
4 Jiang Y, Lu X H, Wu X X, et al. Microstructure and mechanical properties of a Cu/NiAl nanoprecipitate strengthened dual-phase steel[J]. Mater. Charact., 2023, 196: 112594
5 Thompson S W. Interrelationships between yield strength, low-temperature impact toughness, and microstructure in low-carbon, copper-precipitation strengthened, high-strength low-alloy plate steels[J]. Mater. Sci. Eng., 2018, 711A: 424
6 Dhua S K, Ray A, Sarma D S. Effect of tempering temperatures on the mechanical properties and microstructures of HSLA-100 type copper-bearing steels[J]. Mater. Sci. Eng., 2001, 318A: 197
7 Far A R H, Anijdan S H M, Abbasi S M. The effect of increasing Cu and Ni on a significant enhancement of mechanical properties of high strength low alloy, low carbon steels of HSLA-100 type[J]. Mater. Sci. Eng., 2019, 746A: 384
8 Ghosh S K, Bandyopadhyay P S, Kundu S, et al. Copper bearing microalloyed ultrahigh strength steel on a pilot scale: microstructure and properties[J]. Mater. Sci. Eng., 2011, 528A: 7887
9 Ghosh A, Mishra B, Das S, et al. Microstructure, properties, and age hardening behavior of a thermomechanically processed ultralow-carbon Cu-bearing high-strength steel[J]. Metall. Mater. Trans., 2005, 36A: 703
10 Kondo Y. Behaviour of copper during high temperature oxidation of steel containing copper[J]. ISIJ Int., 2004, 44: 1576
11 Yin L, Balaji S, Sridhar S. Effects of nickel on the oxide/metal interface morphology and oxidation rate during high-temperature oxidation of Fe-Cu-Ni alloys[J]. Metall. Mater. Trans., 2010, 41B: 598
12 Mandal S, Tewary N K, Ghosh S K, et al. Thermo-mechanically controlled processed ultrahigh strength steel: Microstructure, texture and mechanical properties[J]. Mater. Sci. Eng., 2016, 663A: 126
13 Ye Q B, Liu Z Y, Yang Y, et al. Effect of rolling temperature and ultrafast cooling rate on microstructure and mechanical properties of steel plate[J]. Metall. Mater. Trans., 2016, 47A: 3622
14 Chen Y, Zhang D T, Liu Y C, et al. Effect of dissolution and precipitation of Nb on the formation of acicular ferrite/bainite ferrite in low-carbon HSLA steels[J]. Mater. Charact., 2013, 84: 232
15 Ma Z Q. Effect of quenching and tempering heat treatment process on microstructure and impact toughness of EH47 high-strength ship plate steel[D]. Anshan: University of Science and Technology Liaoning, 2022
15 马志强. 调质热处理工艺对EH47高强船板钢显微组织和冲击韧性的影响[D]. 鞍山: 辽宁科技大学, 2022
16 Felfer P J, Killmore C R, Williams J G, et al. A quantitative atom probe study of the Nb excess at prior austenite grain boundaries in a Nb microalloyed strip-cast steel[J]. Acta Mater., 2012, 60: 5049
17 Li X L, Wang Z D, Deng X T, et al. Precipitation behavior and kinetics in Nb-V-bearing low-carbon steel[J]. Mater. Lett., 2016, 182: 6
18 Tian Y, Yu H, Zhou T, et al. Revealing morphology rules of MX precipitates in Ti-V-Nb multi-microalloyed steels[J]. Mater. Charact., 2022, 188: 111919
19 Wen T, Hu X F, Song Y Y, et al. Effect of tempering temperature on carbide and mechanical properties in a Fe-Cr-Ni-Mo high-strength steel[J]. Acta Metall. Sin., 2014, 50(4): 447
doi: 10.3724/SP.J.1037.2013.00672
19 温 涛, 胡小锋, 宋元元 等. 回火温度对一种Fe-Cr-Ni-Mo高强钢碳化物及其力学性能的影响[J]. 金属学报, 2014, 50(4): 447
20 Wang J L, Wang S, Xi X H, et al. The role of copper in microstructure and toughness of intercritically reheated coarse grained heat affected zone in a high strength low alloy steel[J]. Mater. Charact., 2021, 181: 111511
21 Habibi H R. Atomic structure of the Cu precipitates in two stages hardening in maraging steel[J]. Mater. Lett., 2005, 59: 1824
22 Sun M X, Zhang W N, Liu Z Y, et al. Direct observations on the crystal structure evolution of nano Cu-precipitates in an extremely low carbon steel[J]. Mater. Lett., 2017, 187: 49
23 Xie H, Wang W. Characterization on a complex crystal structure of nano-rich Cu phase in low alloy ferritic steel[J]. Chin. J. Rare Metals, 2018, 42(3): 325
23 解 辉, 王 伟. 低合金铁素体钢中纳米富Cu相复杂晶体结构的表征[J]. 稀有金属, 2018, 42(3): 325
24 Chai F, Wang Z M, Luo X B, et al. Effect of Ni on the features of Cu-rich precipitates in high-strength low alloy steel[J]. Mater. Rep., 2022, 36(11): 161
24 柴 锋, 王泽民, 罗小兵 等. Ni对高强度低合金钢中富Cu相析出特征的影响[J]. 材料导报, 2022, 36(11): 161
25 Han G, Shang C J, Misra R D K, et al. Solid phase transition of Cu precipitates in a low carbon TRIP assisted steel[J]. Physica, 2019, 569B: 68
26 Sun M X. Study on regulation mechanism for microstructure and mechanical properties of ultra-low carbon nano-sized Cu precipitation strengthened HSLA steel[D]. Shenyang: Northeastern University, 2017
26 孙明雪. 超低碳纳米富Cu相强化HSLA钢组织性能调控机理研究[D]. 沈阳: 东北大学, 2017
27 Zhang S Q, Hu X F, Du Y B, et al. Cross-section effect of Ni-Cr-Mo-B ultra-heavy steel plate for offshore platform[J]. Acta Metall. Sin., 2020, 56(9): 1227
doi: 10.11900/0412.1961.2020.00007
27 张守清, 胡小锋, 杜瑜宾 等. 海洋平台用Ni-Cr-Mo-B超厚钢板的截面效应[J]. 金属学报, 2020, 56(9): 1227
doi: 10.11900/0412.1961.2020.00007
28 Cui Z Q, Qin Y C. Metallography and Heat Treatment 3rd ed.[M]. Beijing: China Machine Press, 2020
28 崔忠圻, 覃耀春. 金属学与热处理(第3版)[M]. 北京: 机械工业出版社, 2020
29 Liu G. Study on impact toughness stability of multi-layer and multi-pass weld metal of heat-resistant steel thick plate[D]. Lanzhou: Lanzhou University of Technology, 2019
29 刘 刚. 耐热钢厚板多层多道焊缝金属冲击韧性稳定性研究[D]. 兰州: 兰州理工大学, 2019
30 Fu W, Li C N, Di X J, et al. Improvement of Cu-rich precipitation strengthening for high-strength low carbon steel strengthened via Ti-microalloying[J]. Mater. Lett., 2022, 316: 132031
31 Kan L Y, Ye Q B, Wang Q H, et al. Refinement of Cu-M2C precipitates and improvement of strength and toughness by Ti microalloying in a Cu-bearing steel[J]. Mater. Sci. Eng., 2021, 802A: 140678
32 Yuan X Q, Liu Z Y, Jiao S H, et al. Effects of nano precipitates in austenite on ferrite transformation start temperature during continuous cooling in Nb-Ti micro-alloyed steels[J]. ISIJ Int., 2007, 47: 1658
33 Ma X P, Miao C L, Langelier B, et al. Suppression of strain-induced precipitation of NbC by epitaxial growth of NbC on pre-existing TiN in Nb-Ti microalloyed steel[J]. Mater. Design, 2017, 132: 244
34 Inoue T, Yin F X, Kimura Y, et al. Delamination effect on impact properties of ultrafine-grained low-carbon steel processed by warm caliber rolling[J]. Metall. Mater. Trans., 2010, 41A: 341
35 Stubbers A, Balk T J. Quantitative SAXS analysis of precipitate characteristics limiting hot ductility in HSLA steels containing V, Nb & NbTi[J]. ISIJ Int., 2023, 63: 1044
36 Blankenburg M, Bäcke L, Claesson E, et al. Revealing precipitate development during hot rolling and cooling of a Ti-Nb micro-alloyed high strength low-alloy steel through X-ray scattering[J]. Adv. Eng. Mater., 2023, 25: 2201356
37 Antion C, Donnadieu P, Perrard F, et al. Hardening precipitation in a Mg-4Y-3RE alloy[J]. Acta Mater., 2003, 51: 5335
[1] 姜爱龙, 谭炳治, 庞建超, 石锋, 张允继, 邹成路, 李守新, 伍启华, 李小武, 张哲峰. 蠕墨铸铁RuT300RuT450的低周疲劳性能和损伤机制[J]. 材料研究学报, 2025, 39(6): 443-454.
[2] 杨亮, 揣荣岩, 薛丹, 刘芳, 刘昆霖, 刘畅, 蔡桂喜. SUS301L不锈钢电阻点焊接头的微观组织和力学性能研究[J]. 材料研究学报, 2025, 39(6): 435-442.
[3] 韩磊磊, 王文涛, 吴赟, 陈嘉俊, 赵勇. 无氟化学溶液法制备YBCO超导焊料的高温生长工艺研究[J]. 材料研究学报, 2025, 39(6): 474-480.
[4] 袁新雨, 史非, 刘敬肖, 张皓杰, 杨大毅, 王美玉, 任明. Er2O3 对二硅酸锂玻璃陶瓷的结构和性能的影响[J]. 材料研究学报, 2025, 39(6): 455-462.
[5] 吴玉程, 左彤, 谭晓月, 朱晓勇, 刘家琴. 第一壁自钝化W-Cr-Zr合金的氧化行为和氧化层结构[J]. 材料研究学报, 2025, 39(5): 343-352.
[6] 任学昌, 安菊, 付宁, 姚小庆, 杨镇瑜, 陈泓锦. 在模拟太阳光下溶剂热时长对MIL-88A(Fe)活化过一硫酸盐降解罗丹明B催化性能的影响[J]. 材料研究学报, 2025, 39(5): 329-342.
[7] 邱玮, 李玉林, 闫瑞, 李雅文, 陈维, 甘浪, 任延杰, 陈荐. Al对镁空气电池用挤压态Mg-Al-Ca-Mn合金阳极腐蚀和放电性能的影响[J]. 材料研究学报, 2025, 39(5): 389-400.
[8] 李海斌, 徐惠婷, 唐伟, 吕海波, 帅美荣. 热轧碳钢/不锈钢复合板结合界面电解腐蚀的毛细效应[J]. 材料研究学报, 2025, 39(5): 362-370.
[9] 符纯国, 徐世伟, 杨晓益, 李萌蘖. 焊接热源模式对5083-H111铝合金接头性能的影响[J]. 材料研究学报, 2025, 39(4): 305-313.
[10] 胥聪敏, 孙姝雯, 朱文胜, 陈志强, 李城臣. 三元复配杀菌剂对P110钢腐蚀行为的影响[J]. 材料研究学报, 2025, 39(4): 281-288.
[11] 陈室雨, 李卫, 旷海燕, 高绍巍, 庞东方. 一种稀土Lu3+ 掺杂无铅压电陶瓷的介电、铁电和压电性能[J]. 材料研究学报, 2025, 39(4): 272-280.
[12] 冉子祚, 张爽, 苏兆翼, 王阳, 邹存磊, 赵亚军, 王增睿, 姜薇薇, 董晨希, 董闯. 基于团簇式的316不锈钢成分优化及其实验验证[J]. 材料研究学报, 2025, 39(3): 207-216.
[13] 钟伟杰, 焦东玲, 刘仲武, 刘娜, 许文勇, 李周, 张国庆. 热等静压态镍基高温合金的高温氧化[J]. 材料研究学报, 2025, 39(3): 172-184.
[14] 胡彭钦, 王栋, 卢玉章, 张健. 热工艺对一种镍基单晶高温合金蠕变性能的影响[J]. 材料研究学报, 2025, 39(3): 161-171.
[15] 胡明, 张新全, 李伟强, 杨晓康, 黄金湖, 雷晓飞, 邱建科, 董利民. FeCu的含量对TC10钛合金棒材力学性能的影响[J]. 材料研究学报, 2025, 39(3): 217-224.