|
|
调质热处理对不同轧制温度的含Cu低合金高强钢力学性能的影响 |
王恒霖1, 丁汉林1( ), 柴锋2, 罗小兵2, 王子健1, 项重辰1 |
1.苏州大学沙钢钢铁学院 苏州 215006 2.钢铁研究总院 工程用钢研究所 北京 100081 |
|
Effect of Quenched-tempered Heat Treatment on Microstructure and Precipitation of High Strength Low Alloy Steel Containing Copper After Being Hot Rolled at Different Temperatures |
WANG Henglin1, DING Hanlin1( ), CHAI Feng2, LUO Xiaobing2, WANG Zijian1, XIANG Chongchen1 |
1.School of Iron and Steel, Soochow University, Suzhou 215006, China 2.Department of Structure Steels, Central Iron and Steel Research Institute, Beijing 100081, China |
引用本文:
王恒霖, 丁汉林, 柴锋, 罗小兵, 王子健, 项重辰. 调质热处理对不同轧制温度的含Cu低合金高强钢力学性能的影响[J]. 材料研究学报, 2025, 39(6): 401-412.
Henglin WANG,
Hanlin DING,
Feng CHAI,
Xiaobing LUO,
Zijian WANG,
Chongchen XIANG.
Effect of Quenched-tempered Heat Treatment on Microstructure and Precipitation of High Strength Low Alloy Steel Containing Copper After Being Hot Rolled at Different Temperatures[J]. Chinese Journal of Materials Research, 2025, 39(6): 401-412.
1 |
Jiao Z B, Luan J H, Zhang Z W, et al. Synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of high-strength steels[J]. Acta Mater., 2013, 61: 5996
|
2 |
Jiao Z B, Luan J H, Miller M K, et al. Precipitation mechanism and mechanical properties of an ultra-high strength steel hardened by nanoscale NiAl and Cu particles[J]. Acta Mater., 2015, 97: 58
|
3 |
Kong H J, Xu C, Bu C C, et al. Hardening mechanisms and impact toughening of a high-strength steel containing low Ni and Cu additions[J]. Acta Mater., 2019, 172: 150
doi: 10.1016/j.actamat.2019.04.041
|
4 |
Jiang Y, Lu X H, Wu X X, et al. Microstructure and mechanical properties of a Cu/NiAl nanoprecipitate strengthened dual-phase steel[J]. Mater. Charact., 2023, 196: 112594
|
5 |
Thompson S W. Interrelationships between yield strength, low-temperature impact toughness, and microstructure in low-carbon, copper-precipitation strengthened, high-strength low-alloy plate steels[J]. Mater. Sci. Eng., 2018, 711A: 424
|
6 |
Dhua S K, Ray A, Sarma D S. Effect of tempering temperatures on the mechanical properties and microstructures of HSLA-100 type copper-bearing steels[J]. Mater. Sci. Eng., 2001, 318A: 197
|
7 |
Far A R H, Anijdan S H M, Abbasi S M. The effect of increasing Cu and Ni on a significant enhancement of mechanical properties of high strength low alloy, low carbon steels of HSLA-100 type[J]. Mater. Sci. Eng., 2019, 746A: 384
|
8 |
Ghosh S K, Bandyopadhyay P S, Kundu S, et al. Copper bearing microalloyed ultrahigh strength steel on a pilot scale: microstructure and properties[J]. Mater. Sci. Eng., 2011, 528A: 7887
|
9 |
Ghosh A, Mishra B, Das S, et al. Microstructure, properties, and age hardening behavior of a thermomechanically processed ultralow-carbon Cu-bearing high-strength steel[J]. Metall. Mater. Trans., 2005, 36A: 703
|
10 |
Kondo Y. Behaviour of copper during high temperature oxidation of steel containing copper[J]. ISIJ Int., 2004, 44: 1576
|
11 |
Yin L, Balaji S, Sridhar S. Effects of nickel on the oxide/metal interface morphology and oxidation rate during high-temperature oxidation of Fe-Cu-Ni alloys[J]. Metall. Mater. Trans., 2010, 41B: 598
|
12 |
Mandal S, Tewary N K, Ghosh S K, et al. Thermo-mechanically controlled processed ultrahigh strength steel: Microstructure, texture and mechanical properties[J]. Mater. Sci. Eng., 2016, 663A: 126
|
13 |
Ye Q B, Liu Z Y, Yang Y, et al. Effect of rolling temperature and ultrafast cooling rate on microstructure and mechanical properties of steel plate[J]. Metall. Mater. Trans., 2016, 47A: 3622
|
14 |
Chen Y, Zhang D T, Liu Y C, et al. Effect of dissolution and precipitation of Nb on the formation of acicular ferrite/bainite ferrite in low-carbon HSLA steels[J]. Mater. Charact., 2013, 84: 232
|
15 |
Ma Z Q. Effect of quenching and tempering heat treatment process on microstructure and impact toughness of EH47 high-strength ship plate steel[D]. Anshan: University of Science and Technology Liaoning, 2022
|
15 |
马志强. 调质热处理工艺对EH47高强船板钢显微组织和冲击韧性的影响[D]. 鞍山: 辽宁科技大学, 2022
|
16 |
Felfer P J, Killmore C R, Williams J G, et al. A quantitative atom probe study of the Nb excess at prior austenite grain boundaries in a Nb microalloyed strip-cast steel[J]. Acta Mater., 2012, 60: 5049
|
17 |
Li X L, Wang Z D, Deng X T, et al. Precipitation behavior and kinetics in Nb-V-bearing low-carbon steel[J]. Mater. Lett., 2016, 182: 6
|
18 |
Tian Y, Yu H, Zhou T, et al. Revealing morphology rules of MX precipitates in Ti-V-Nb multi-microalloyed steels[J]. Mater. Charact., 2022, 188: 111919
|
19 |
Wen T, Hu X F, Song Y Y, et al. Effect of tempering temperature on carbide and mechanical properties in a Fe-Cr-Ni-Mo high-strength steel[J]. Acta Metall. Sin., 2014, 50(4): 447
doi: 10.3724/SP.J.1037.2013.00672
|
19 |
温 涛, 胡小锋, 宋元元 等. 回火温度对一种Fe-Cr-Ni-Mo高强钢碳化物及其力学性能的影响[J]. 金属学报, 2014, 50(4): 447
|
20 |
Wang J L, Wang S, Xi X H, et al. The role of copper in microstructure and toughness of intercritically reheated coarse grained heat affected zone in a high strength low alloy steel[J]. Mater. Charact., 2021, 181: 111511
|
21 |
Habibi H R. Atomic structure of the Cu precipitates in two stages hardening in maraging steel[J]. Mater. Lett., 2005, 59: 1824
|
22 |
Sun M X, Zhang W N, Liu Z Y, et al. Direct observations on the crystal structure evolution of nano Cu-precipitates in an extremely low carbon steel[J]. Mater. Lett., 2017, 187: 49
|
23 |
Xie H, Wang W. Characterization on a complex crystal structure of nano-rich Cu phase in low alloy ferritic steel[J]. Chin. J. Rare Metals, 2018, 42(3): 325
|
23 |
解 辉, 王 伟. 低合金铁素体钢中纳米富Cu相复杂晶体结构的表征[J]. 稀有金属, 2018, 42(3): 325
|
24 |
Chai F, Wang Z M, Luo X B, et al. Effect of Ni on the features of Cu-rich precipitates in high-strength low alloy steel[J]. Mater. Rep., 2022, 36(11): 161
|
24 |
柴 锋, 王泽民, 罗小兵 等. Ni对高强度低合金钢中富Cu相析出特征的影响[J]. 材料导报, 2022, 36(11): 161
|
25 |
Han G, Shang C J, Misra R D K, et al. Solid phase transition of Cu precipitates in a low carbon TRIP assisted steel[J]. Physica, 2019, 569B: 68
|
26 |
Sun M X. Study on regulation mechanism for microstructure and mechanical properties of ultra-low carbon nano-sized Cu precipitation strengthened HSLA steel[D]. Shenyang: Northeastern University, 2017
|
26 |
孙明雪. 超低碳纳米富Cu相强化HSLA钢组织性能调控机理研究[D]. 沈阳: 东北大学, 2017
|
27 |
Zhang S Q, Hu X F, Du Y B, et al. Cross-section effect of Ni-Cr-Mo-B ultra-heavy steel plate for offshore platform[J]. Acta Metall. Sin., 2020, 56(9): 1227
doi: 10.11900/0412.1961.2020.00007
|
27 |
张守清, 胡小锋, 杜瑜宾 等. 海洋平台用Ni-Cr-Mo-B超厚钢板的截面效应[J]. 金属学报, 2020, 56(9): 1227
doi: 10.11900/0412.1961.2020.00007
|
28 |
Cui Z Q, Qin Y C. Metallography and Heat Treatment 3rd ed.[M]. Beijing: China Machine Press, 2020
|
28 |
崔忠圻, 覃耀春. 金属学与热处理(第3版)[M]. 北京: 机械工业出版社, 2020
|
29 |
Liu G. Study on impact toughness stability of multi-layer and multi-pass weld metal of heat-resistant steel thick plate[D]. Lanzhou: Lanzhou University of Technology, 2019
|
29 |
刘 刚. 耐热钢厚板多层多道焊缝金属冲击韧性稳定性研究[D]. 兰州: 兰州理工大学, 2019
|
30 |
Fu W, Li C N, Di X J, et al. Improvement of Cu-rich precipitation strengthening for high-strength low carbon steel strengthened via Ti-microalloying[J]. Mater. Lett., 2022, 316: 132031
|
31 |
Kan L Y, Ye Q B, Wang Q H, et al. Refinement of Cu-M2C precipitates and improvement of strength and toughness by Ti microalloying in a Cu-bearing steel[J]. Mater. Sci. Eng., 2021, 802A: 140678
|
32 |
Yuan X Q, Liu Z Y, Jiao S H, et al. Effects of nano precipitates in austenite on ferrite transformation start temperature during continuous cooling in Nb-Ti micro-alloyed steels[J]. ISIJ Int., 2007, 47: 1658
|
33 |
Ma X P, Miao C L, Langelier B, et al. Suppression of strain-induced precipitation of NbC by epitaxial growth of NbC on pre-existing TiN in Nb-Ti microalloyed steel[J]. Mater. Design, 2017, 132: 244
|
34 |
Inoue T, Yin F X, Kimura Y, et al. Delamination effect on impact properties of ultrafine-grained low-carbon steel processed by warm caliber rolling[J]. Metall. Mater. Trans., 2010, 41A: 341
|
35 |
Stubbers A, Balk T J. Quantitative SAXS analysis of precipitate characteristics limiting hot ductility in HSLA steels containing V, Nb & NbTi[J]. ISIJ Int., 2023, 63: 1044
|
36 |
Blankenburg M, Bäcke L, Claesson E, et al. Revealing precipitate development during hot rolling and cooling of a Ti-Nb micro-alloyed high strength low-alloy steel through X-ray scattering[J]. Adv. Eng. Mater., 2023, 25: 2201356
|
37 |
Antion C, Donnadieu P, Perrard F, et al. Hardening precipitation in a Mg-4Y-3RE alloy[J]. Acta Mater., 2003, 51: 5335
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|