Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (6): 413-424    DOI: 10.11901/1005.3093.2024.273
  研究论文 本期目录 | 过刊浏览 |
坡缕石负载Zn-In LDO/ZnS/In2S3 复合材料对甲基橙的光催化降解
马雪娥1, 胡美凤1, 宋雪丽1, 常玥1,2,3(), 查飞1
1.西北师范大学化学化工学院 兰州 730070
2.生态功能高分子材料教育部重点实验室 兰州 730070
3.甘肃省高分子材料重点实验室 兰州 730070
Photocatalytic Degradation of Methyl Orange Using Palygorskite Supported Zn-In LDO/ZnS/In2S3 Composites
MA Xue′e1, HU Meifeng1, SONG Xueli1, CHANG Yue1,2,3(), ZHA Fei1
1.College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
2.Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Lanzhou 730070, China
3.Key Laboratory of Polymer Materials of Gansu Province, Lanzhou 730070, China
引用本文:

马雪娥, 胡美凤, 宋雪丽, 常玥, 查飞. 坡缕石负载Zn-In LDO/ZnS/In2S3 复合材料对甲基橙的光催化降解[J]. 材料研究学报, 2025, 39(6): 413-424.
Xue′e MA, Meifeng HU, Xueli SONG, Yue CHANG, Fei ZHA. Photocatalytic Degradation of Methyl Orange Using Palygorskite Supported Zn-In LDO/ZnS/In2S3 Composites[J]. Chinese Journal of Materials Research, 2025, 39(6): 413-424.

全文: PDF(12028 KB)   HTML
摘要: 

以坡缕石负载Zn-In LDO(PGS@Zn-In LDO)和硫代乙酰胺为原料,通过水热法在PGS@Zn-In LDO上原位生长ZnS、In2S3制备PGS@Zn-In LDO/ZnS/In2S3复合材料,利用X射线衍射仪(XRD)、比表面积-孔径分析仪(BET)、扫描电子显微镜(SEM)、热场发射透射电子显微镜(TEM)、X射线光电子能谱仪(XPS)、电感耦合等离子体发射光谱仪(ICP-OES)、紫外-可见分光光度计(Uv-vis DRS)、荧光光谱仪、电化学交流阻抗(EIS)测试等手段对其表征,研究其对甲基橙(MO)的光催化降解性能。结果表明,这种材料的吸光范围比Zn-In LDO/ZnS/In2S3的宽。并且坡缕石有利于Zn-In LDO/ZnS/In2S3复合材料的光生载流子的迁移。模拟可见光光照60 min后50%PGS@Zn-In LDO/ZnS/In2S3-2复合材料对甲基橙(MO)的降解率为99.1%,其催化稳定性也比较高。在这种材料的光降解反应中起关键作用的是超氧负离子和空穴,在相同的实验条件下对酸性品红、结晶紫、罗丹明B、孔雀石绿、亚甲基蓝等常见染料的降解率不低于97.2%。

关键词 复合材料工业催化染料废水光催化降解坡缕石负载Zn-In LDO/ZnS/In2S3    
Abstract

Herein, composites PGS@Zn-In LDO/ZnS/In2S3 were prepared by hydrothermal method with palygorskite (PGS) supported Zn-In LDO (PGS@Zn-In LDO) and thioacetamide as raw materials, namely in situ growth of ZnS and In2S3 on PGS@Zn-In LDO. The light absorption region of PGS@Zn-In LDO/ZnS/In2S3 composites is wider than that of the plain PGS@Zn-In LDO in ultraviolet-visible diffuse reflection spectrum. Photoluminescence spectrum and electrochemical impedance spectroscopy test results show that palygorskite is beneficial for the movement of photogenic charge carrier in Zn-In LDO/ZnS/In2S3 composites. After being subjected to a simulate visible light irradiation for 60 min, the 50% PGS@Zn-In LDO/ZnS/In2S3-2 composite as photocatalyst can even show a degradation rate up to 99.1% for methyl orange, exhibiting the composite possess better catalytic stability. In contrast, the common cations and anions in solution hardly effect on the photodegradation reaction except H2PO4-. It is proposed that the superoxide radicals and vacancies may played a key role in the photocatalytic degradation reaction of MO. Therefore, it may be expected that the degradation rate of acid fuchsin, crystal violet, rhodamine B, malachite green and methylene blue and other common dyes is not less than 97.2% in the same testing conditions.

Key wordscomposites    industrial catalysis    dye wastewater    photocatalytic degradation    palygorskite supported Zn-In LDO/ZnS/In2S3
收稿日期: 2024-06-12     
ZTFLH:  O649.4  
基金资助:国家自然科学基金(21865031);甘肃省高校产业支撑计划(2023CYZC-18)
通讯作者: 常玥,教授,cy70@sina.com,研究方向为功能材料的制备及应用
Corresponding author: CHANG Yue, Tel: 13919331971, E-mail:cy70@sina.com
作者简介: 马雪娥,女,2000年生,硕士生
图1  Zn-In LDH、Zn-In LDO、LDO/ZS/IS-2和50%PGS@LDO/ZS/IS-2的SEM照片以及Zn-In LDO和50%PGS@LDO/ZS/IS-2的TEM
图2  Zn-In LDO、LDO/ZS/IS-2、50%PGS@LDO/ZS/IS-2的XRD谱
图3  Zn-In LDO、50%PGS@LDO/ZS/IS-2的XPS光谱与In 3d、Zn 2p、S 2p的高分辨率XPS光谱
SampleSurface area / m2·g-1Pore volume / cm3·g-1Pore diameter / nm
Zn-In LDO90.740.1453.321
LDO/ZS/IS-2143.400.3613.513
50%PGS@LDO/ZS/IS-2143.960.5463.523
表1  不同材料的比表面积、孔容及孔径
图4  不同材料的N2吸附-脱附等温线和相应孔径分布曲线
图5  不同样品的紫外-可见漫反射光谱和相应的禁带宽度
图6  不同样品的光致发光光谱以及Zn-In LDO、LDO/ZS/IS-2和50%PGS@LDO/ZS/IS-2的EIS谱
图7  不同硫化量的LDO/ZS/IS对MO的降解和拟一级动力学曲线
图8  PGS@LDO/ZS/IS-2对MO光催化降解的影响以及50%PGS@LDO/ZS/IS-2对不同染料的降解
图9  催化剂用量和染料初始浓度对光催化反应的影响
图10  不同阳离子和阴离子对MO光催化反应的影响
图11  50%PGS@LDO/ZS/IS-2复合材料的循环稳定性
SampleCat./MO (mg/mg)Xenon lamp / WTime / minDegradation rate / %Ref.
In2S3/UiO-6633.3/15006026.9[41]
In2S3/In2O350/130018060.0[42]
5% graphite/TiO210/13007095.1[37]
LaNi1-x Mn x O3100/130012099.5[43]
SnO2-In2S313.3/130012088.4[44]
SF6 doped g-C3N4100/12006062.0[45]
50%PGS@LDO/ZS/IS-233.3/13006099.1This work
表2  可见光下不同光催化剂对MO的光降解
图12  活性基团对光催化降解性能的影响
图13  光催化降解机理
1 Wang Q, O'Hare D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets[J]. Chem. Rev., 2012, 112(7): 4124
doi: 10.1021/cr200434v pmid: 22452296
2 Lv X S, Zhang J Y, Dong X G, et al. Layered double hydroxide nanosheets as efficient photo-catalysts for NO removal: band structure engineering and surface hydroxyl ions activation[J]. Appl. Catal., 2020, 277B: 119200
3 Lu X Y, Xue H R, Gong H, et al. 2D layered double hydroxide nanosheets and their derivatives toward efficient oxygen evolution reaction[J]. Nano-Micro Lett., 2020, 12(1): 86
doi: 10.1007/s40820-020-00421-5 pmid: 34138111
4 Shao M F, Han J B, Wei M, et al. The synthesis of hierarchical Zn-Ti layered double hydroxide for efficient visible-light photocatalysis[J]. Chem. Eng. J., 2011, 168(2): 519
5 Wang L, Zhu Z Q, Wang F, et al. State-of-the-art and prospects of Zn-containing layered double hydroxides (Zn-LDH)-based materials for photocatalytic water remediation[J]. Chemosphere, 2021, 278: 130367
6 Shen J H, Shi A T, Wu M F, et al. Efficient degradation of bisphenol A over facilely optimized ternary Ag/ZnO/ZnAl‒LDH composite with enhanced photocatalytic performance under visible light irradiation[J]. Solid State Sci., 2022, 132: 106992
7 Li Z, Zhang Q, Liu X, et al. Mechanochemical synthesis of novel heterostructured Bi2S3/Zn-Al layered double hydroxide nano-particles as efficient visible light reactive Z-scheme photocatalysts[J]. Appl. Surf. Sci. 2018, 452: 123
8 Hu M Q, Lou H, Yan X L, et al. In-situ fabrication of ZIF-8 decorated layered double oxides for adsorption and photocatalytic degradation of methylene blue[J]. Micropor. Mesopor. Mat., 2018, 271: 68
9 Meng Y, Xia S J, Xue J L, et al. Synthesis and photocatalytic degradation performance for rhodamin B of Zn-Cr-Cu composite metal oxides derived from layered double hydroxides[J]. Chin. J. Inorg. Chem., 2018, 34(9): 1632
9 孟 跃, 夏盛杰, 薛继龙 等. 基于水滑石的Zn-Cr-Cu复合金属氧化物的制备及其对罗丹明B的光催化降解性能[J]. 无机化学学报, 2018, 34(9): 1632
10 Oladipo A A. CuCr2O4@CaFe–LDO photocatalyst for remarkable removal of COD from high-strength olive mill wastewater[J]. J. Colloid Interface Sci., 2021, 591(1): 193
11 Zheng X G, Zhu Q, Peng H, et al. Efficient solar-light induced photocatalytic capacity of Mg-Al LDO coupled with N-defected g-C3N4 [J]. Chem. Phys. Lett., 2021, 779: 138846
12 Zhang K, Guo L J. Metal sulphide semiconductors for photocatalytic hydrogen production[J]. Catal. Sci. Technol., 2013, 3(7): 1672
13 He Z Y, Wang Y, Dong X L, et al. Indium sulfide nanotubes with sulfur vacancies as an efficient photocatalyst for nitrogen fixation[J]. RSC Adv., 2019, 9(38): 21646
14 Zhao T, Zhu X F, Huang Y F, et al. One-step hydrothermal synthesis of a ternary heterojunction g-C3N4/Bi2S3/In2S3 photocatalyst and its enhanced photocatalytic performance[J]. RSC Adv., 2021, 11(17): 9788
15 Zhang S S, Ou X Y, Xiang Q, et al. Research progress in metal sulfides for photocatalysis: from activity to stability[J]. Chemosphere, 2022, 303(2): 135085
16 Xu J J, Liu C, Niu J F, et al. Preparation of In2S3 nanosheets decorated KNbO3 nanocubes composite photocatalysts with significantly enhanced activity under visible light irradiation[J]. Sep. Purif. Technol., 2020, 230: 115861
17 Li Z L, Liu X R, Li S Y, et al. Shape-controlled hollow Cu2O@CuS nanocubes with enhanced photocatalytic activities towards degradation of tetracycline[J]. Environ. Technol., 2023, 44(18): 2702
18 Li Y, Yu S, Doronkin D E, et al. Highly dispersed PdS preferably anchored on In2S3 of MnS/In2S3 composite for effective and stable hydrogen production from H2S[J]. J. Catal., 2019, 373: 48
19 Baral B, Paramanik L, Parida K. Functional facet isotype junction and semiconductor/r-GO minor Schottky barrier tailored In2S3@r-GO@(040/110)-BiVO4 ternary hybrid[J]. J. Colloid Interface Sci., 2021, 585: 519
20 Chen M Q, Wang Y S, Yang Z L, et al. Effect of Mg-modified mesoporous Ni/Attapulgite catalysts on catalytic performance and resistance to carbon deposition for ethanol steam reforming[J]. Fuel, 2018, 220: 32
21 Wang W B, Wang A Q. Recent progress in dispersion of palygorskite crystal bundles for nanocomposites[J]. Appl. Clay Sci., 2016, 119: 18
22 Liu H, Xiang J R, Wang J W, et al. Performance of depolymerized attapulgite-loaded nano-Fe/Ni composite in dechlorination of 2, 4-dichlorophenol from aqueous solution[J]. J. Wuhan Univ. Sci. Technol., 2023, 46(2): 101
22 刘 红, 向金蓉, 王珺雯 等. 解聚凹凸棒土负载纳米Fe/Ni材料对水中2, 4-二氯酚的脱氯降解性能[J]. 武汉科技大学学报, 2023, 46(2): 101
23 Li X Y, Peng K. Hydrothermal synthesis of MoS2 nanosheet/palygorskite nanofiber hybrid nanostructures for enhanced catalytic activity[J]. Appl. Clay Sci., 2018, 162: 175
24 Huang B Y, Zhang Z X, Zhao C H, et al. Enhanced gas-sensing performance of ZnO@In2O3 core@ shell nanofibers prepared by coaxial electrospinning[J]. Sens. Actuators, 2018, 255B: 2248
25 Liu F Y, Jiang Y, Yang J, et al. MoS2 nanodot decorated In2S3 nanoplates: a novel heterojunction with enhanced photoelectrochemical performance[J]. Chem. Commun., 2016, 52(9): 1867
26 Li L Q, Yao C J, Wu L, et al. ZnS covering of ZnO nanorods for enhancing UV emission from ZnO[J]. J. Phys. Chem. C, 2021, 125(25): 13732
27 Ioannidou T, Anagnostopoulou M, Papoulis D, et al. UiO-66/Palygorskite/TiO2 ternary composites as adsorbents and photocatalysts for methyl orange removal[J]. Appl. Sci., 2022, 12(16): 8223
28 Zhang J, Zhang T, Liang X C, et al. Efficient photocatalysis of CrVI and methylene blue by dispersive palygorskite-loaded zero-valent iron/carbon nitride[J]. Appl. Clay Sci., 2020, 198: 105817
29 Lan M, Fan G L, Yang L, et al. Enhanced visible-light-induced photocatalytic performance of a novel ternary semiconductor coupling system based on hybrid Zn-In mixed metal oxide/g-C3N4 composites[J]. RSC Adv., 2015, 5(8): 5725
30 Zhang L Z, Li Y N, Wang M Q, et al. The construction of ZnS-In2S3 nanonests and their heterojunction boosted visible-light photocatalytic/photoelectrocatalytic performance[J]. New J. Chem., 2019, 43(36): 14402
31 Valente J S, Tzompantzi F, Prince J, et al. Adsorption and photocatalytic degradation of phenol and 2, 4 dichlorophenoxiacetic acid by Mg-Zn-Al layered double hydroxides[J]. Appl. Catal., 2009, 90B(3-4) : 330
32 Yuan X Z, Jiang L B, Liang J, et al. In-situ synthesis of 3D microsphere-like In2S3/InVO4 heterojunction with efficient photocatalytic activity for tetracycline degradation under visible light irradiation[J]. Chem. Eng. J., 2019, 356: 371
33 Zhou L C. Preparation of fluorine modified titanium dioxide catalyst and its photocatalytic degradation for oilfield wastewater[J]. Chin. J. Mater. Res., 2024, 38(2): 141
33 周立臣. 等离子体氟改性TiO2催化剂的制备及其光催化性能[J]. 材料研究学报, 2024, 38(2): 141
34 Li X Z, He C L, Zuo S X, et al. Photocatalytic nitrogen fixation over fluoride/attapulgite nanocomposite: Effect of upconversion and fluorine vacancy[J]. Sol. Energy, 2019, 191: 251
35 Gunnagol R M, Rabinal M H K. TiO2-graphene nanocomposites for effective photocatalytic degradation of Rhodamine-B dye[J]. ChemistrySelect, 2018, 3(9): 2578
36 Lin Y, Yang C P, Wu S H, et al. Construction of built-in electric field within silver phosphate photocatalyst for enhanced removal of recalcitrant organic pollutants[J]. Adv. Funct. Mater., 2020, 30(38): 2002918
37 Hou J, Yang P Z, Deng Q H, et al. Preparation and performance of graphite/TiO2 composite photocatalyst[J]. Chin. J. Mater. Res., 2021, 35(9): 703
37 侯 静, 杨培志, 郑勤红 等. 石墨/TiO2复合光催化剂的制备和性能[J]. 材料研究学报, 2021, 35(9): 703
38 Liang X, Jiang Y L, Cui F K, et al. Catalyst for preparation of succinic anhydride by hydrogenation of maleic anhydride and preparation method thereof [P]. Chin Pat., 110227469A, 2019
38 梁 旭, 蒋元力, 崔发科 等. 一种顺酐加氢制备丁二酸酐的催化剂及其制备方法 [P]. 中国专利, 110227469A, 2019)
39 Wang Y J, Lu K C, Feng C G. Influence of inorganic anions and organic additives on photocatalytic degradation of methyl orange with supported polyoxometalates as photocatalyst[J]. J. Rare Earth, 2013, 31(4): 360
40 Hu C, Yu J C, Hao Z, et al. Effects of acidity and inorganic ions on the photocatalytic degradation of different azo dyes[J]. Appl. Catal., 2003, 46B(1) : 35
41 Zhang X L, Zhang N, Gan C X, et al. Synthesis of In2S3/UiO-66 hybrid with enhanced photocatalytic activity towards methyl orange and tetracycline hydrochloride degradation under visible-light irradiation[J]. Mat. Sci. Semicon. Proc., 2019, 91: 212
42 Qiao Z, Yan T J, Li W J, et al. In situ anion exchange synthesis of In2S3/In(OH)3 heterostructures for efficient photocatalytic degradation of MO under solar light[J]. New J. Chem., 2017, 41(8): 3134
43 Zeng L, Peng T J, Sun H J, et al. Synthesis and photocatalytic activity in visible light of Mn-doped LaNi1- x Mn x O3 [J]. Chin. Mater. Rep., 2021, 35(24): 24018
43 曾 鹂, 彭同江, 孙红娟 等. Mn掺杂LaNi1- x Mn x O3的合成及在可见光下的光催化活性[J]. 材料导报, 2021, 35(24): 24018
44 Sloman S R I, Sain S, Olszówka J, et al. Reducing indium dependence by heterostructure design in SnO2-In2S3 nanocomposites[J]. Mater. Chem. Phys., 2022, 277: 125463
45 Yang X P, Luo Z, Wang D, et al. Simple hydrothermal preparation of sulfur fluoride-doped g-C3N4 and its photocatalytic degradation of methyl orange[J]. Mat. Sci. Eng., 2023, 288B: 116216
[1] 杨言言, 刘堰, 杨颂, 汪紫彤, 朱峰, 余钟亮, 郝晓刚. 石墨烯掺杂的聚吡咯/钴镍双氢氧化物电控分离低浓度磷酸盐的性能[J]. 材料研究学报, 2025, 39(6): 425-434.
[2] 胡勇, 路世峰, 杨滔, 潘春旺, 刘林成, 赵龙志, 唐延川, 刘德佳, 焦海涛. FeCoCrNiMn/6061铝基复合材料的组织性能[J]. 材料研究学报, 2025, 39(5): 353-361.
[3] 刘艳云, 王娜, 张志华, 白文, 刘云洁, 陈勇强, 李万喜, 李瑀. MOFs衍生C/LDH/rGO网状复合材料构筑高比容量水系锌离子电容器[J]. 材料研究学报, 2025, 39(5): 371-376.
[4] 李颖, 聂学童, 钱立国, 朱忆仁. Co3O4/ZnO@MG-C3Nx 催化剂的合成及其可见光降解亚甲基蓝的性能[J]. 材料研究学报, 2025, 39(4): 241-250.
[5] 张森晗, 王欢, 张家慷, 冯效迁, 张启俭, 赵永华. 改性HZSM-5/Cu-ZnO-Al2O3 催化剂用于二甲醚水蒸气重整制氢[J]. 材料研究学报, 2025, 39(4): 251-258.
[6] 孙波, 张天宇, 赵强强, 王函, 佟钰, 曾尤. MXene@碳纤维毡复合薄膜的电磁屏蔽性能[J]. 材料研究学报, 2025, 39(4): 289-295.
[7] 唐晨, 张耀宗, 王一凡, 刘超, 赵德润, 董鹏昊. α-Fe2O3/TiO2 光催化材料的制备及其降解苯酚的性能[J]. 材料研究学报, 2025, 39(3): 233-240.
[8] 于文静, 刘春忠, 张洪亮, 卢天倪, 王东, 李娜, 黄震威. SiC含量对SiCP/6092铝基复合材料微弧氧化膜耐蚀性的影响[J]. 材料研究学报, 2025, 39(2): 153-160.
[9] 包秀坤, 史桂梅. NiCo@C(N)/NC纳米复合物的制备及其吸波性能[J]. 材料研究学报, 2025, 39(2): 126-136.
[10] 崔思凯, 付广艳, 林立海, 颜雨坤, 李处森. 碳化硅吸波材料的原位反应法制备及其机理[J]. 材料研究学报, 2024, 38(9): 659-668.
[11] 张恒宇, 黄照单, 段体岗, 温青, 李若灿, 吴厚燃, 马力, 张海兵. 碳基Pt@Co多层次复合催化阴极海水介质电催化氧还原行为研究[J]. 材料研究学报, 2024, 38(8): 632-640.
[12] 黄闻战, 陈尧, 陈鹏, 张玉洁, 陈星宇. 用二次发泡法制备SiC/Al复合泡沫铝孔结构的稳定性[J]. 材料研究学报, 2024, 38(8): 605-613.
[13] 谭上荣, 姚焯, 刘泽辰, 蒋奕蕾, 郭诗琪, 李丽丽. 金属有机骨架Zn-BTC/rGO复合材料的制备和性能[J]. 材料研究学报, 2024, 38(8): 576-584.
[14] 郝子恒, 郑刘梦晗, 张妮, 蒋恩桐, 王国政, 杨继凯. WO3/PtNiO电极电致变色器件的性能[J]. 材料研究学报, 2024, 38(8): 569-575.
[15] 周慧, 杜彬, 杨鹏斌, 金党琴, 肖伽励, 沈明, 王升文. 鸟巢状Bi/β-Bi2O3 异质结的制备及其可见光催化性能[J]. 材料研究学报, 2024, 38(7): 549-560.