|
|
坡缕石负载Zn-In LDO/ZnS/In2S3 复合材料对甲基橙的光催化降解 |
马雪娥1, 胡美凤1, 宋雪丽1, 常玥1,2,3( ), 查飞1 |
1.西北师范大学化学化工学院 兰州 730070 2.生态功能高分子材料教育部重点实验室 兰州 730070 3.甘肃省高分子材料重点实验室 兰州 730070 |
|
Photocatalytic Degradation of Methyl Orange Using Palygorskite Supported Zn-In LDO/ZnS/In2S3 Composites |
MA Xue′e1, HU Meifeng1, SONG Xueli1, CHANG Yue1,2,3( ), ZHA Fei1 |
1.College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China 2.Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Lanzhou 730070, China 3.Key Laboratory of Polymer Materials of Gansu Province, Lanzhou 730070, China |
引用本文:
马雪娥, 胡美凤, 宋雪丽, 常玥, 查飞. 坡缕石负载Zn-In LDO/ZnS/In2S3 复合材料对甲基橙的光催化降解[J]. 材料研究学报, 2025, 39(6): 413-424.
Xue′e MA,
Meifeng HU,
Xueli SONG,
Yue CHANG,
Fei ZHA.
Photocatalytic Degradation of Methyl Orange Using Palygorskite Supported Zn-In LDO/ZnS/In2S3 Composites[J]. Chinese Journal of Materials Research, 2025, 39(6): 413-424.
1 |
Wang Q, O'Hare D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets[J]. Chem. Rev., 2012, 112(7): 4124
doi: 10.1021/cr200434v
pmid: 22452296
|
2 |
Lv X S, Zhang J Y, Dong X G, et al. Layered double hydroxide nanosheets as efficient photo-catalysts for NO removal: band structure engineering and surface hydroxyl ions activation[J]. Appl. Catal., 2020, 277B: 119200
|
3 |
Lu X Y, Xue H R, Gong H, et al. 2D layered double hydroxide nanosheets and their derivatives toward efficient oxygen evolution reaction[J]. Nano-Micro Lett., 2020, 12(1): 86
doi: 10.1007/s40820-020-00421-5
pmid: 34138111
|
4 |
Shao M F, Han J B, Wei M, et al. The synthesis of hierarchical Zn-Ti layered double hydroxide for efficient visible-light photocatalysis[J]. Chem. Eng. J., 2011, 168(2): 519
|
5 |
Wang L, Zhu Z Q, Wang F, et al. State-of-the-art and prospects of Zn-containing layered double hydroxides (Zn-LDH)-based materials for photocatalytic water remediation[J]. Chemosphere, 2021, 278: 130367
|
6 |
Shen J H, Shi A T, Wu M F, et al. Efficient degradation of bisphenol A over facilely optimized ternary Ag/ZnO/ZnAl‒LDH composite with enhanced photocatalytic performance under visible light irradiation[J]. Solid State Sci., 2022, 132: 106992
|
7 |
Li Z, Zhang Q, Liu X, et al. Mechanochemical synthesis of novel heterostructured Bi2S3/Zn-Al layered double hydroxide nano-particles as efficient visible light reactive Z-scheme photocatalysts[J]. Appl. Surf. Sci. 2018, 452: 123
|
8 |
Hu M Q, Lou H, Yan X L, et al. In-situ fabrication of ZIF-8 decorated layered double oxides for adsorption and photocatalytic degradation of methylene blue[J]. Micropor. Mesopor. Mat., 2018, 271: 68
|
9 |
Meng Y, Xia S J, Xue J L, et al. Synthesis and photocatalytic degradation performance for rhodamin B of Zn-Cr-Cu composite metal oxides derived from layered double hydroxides[J]. Chin. J. Inorg. Chem., 2018, 34(9): 1632
|
9 |
孟 跃, 夏盛杰, 薛继龙 等. 基于水滑石的Zn-Cr-Cu复合金属氧化物的制备及其对罗丹明B的光催化降解性能[J]. 无机化学学报, 2018, 34(9): 1632
|
10 |
Oladipo A A. CuCr2O4@CaFe–LDO photocatalyst for remarkable removal of COD from high-strength olive mill wastewater[J]. J. Colloid Interface Sci., 2021, 591(1): 193
|
11 |
Zheng X G, Zhu Q, Peng H, et al. Efficient solar-light induced photocatalytic capacity of Mg-Al LDO coupled with N-defected g-C3N4 [J]. Chem. Phys. Lett., 2021, 779: 138846
|
12 |
Zhang K, Guo L J. Metal sulphide semiconductors for photocatalytic hydrogen production[J]. Catal. Sci. Technol., 2013, 3(7): 1672
|
13 |
He Z Y, Wang Y, Dong X L, et al. Indium sulfide nanotubes with sulfur vacancies as an efficient photocatalyst for nitrogen fixation[J]. RSC Adv., 2019, 9(38): 21646
|
14 |
Zhao T, Zhu X F, Huang Y F, et al. One-step hydrothermal synthesis of a ternary heterojunction g-C3N4/Bi2S3/In2S3 photocatalyst and its enhanced photocatalytic performance[J]. RSC Adv., 2021, 11(17): 9788
|
15 |
Zhang S S, Ou X Y, Xiang Q, et al. Research progress in metal sulfides for photocatalysis: from activity to stability[J]. Chemosphere, 2022, 303(2): 135085
|
16 |
Xu J J, Liu C, Niu J F, et al. Preparation of In2S3 nanosheets decorated KNbO3 nanocubes composite photocatalysts with significantly enhanced activity under visible light irradiation[J]. Sep. Purif. Technol., 2020, 230: 115861
|
17 |
Li Z L, Liu X R, Li S Y, et al. Shape-controlled hollow Cu2O@CuS nanocubes with enhanced photocatalytic activities towards degradation of tetracycline[J]. Environ. Technol., 2023, 44(18): 2702
|
18 |
Li Y, Yu S, Doronkin D E, et al. Highly dispersed PdS preferably anchored on In2S3 of MnS/In2S3 composite for effective and stable hydrogen production from H2S[J]. J. Catal., 2019, 373: 48
|
19 |
Baral B, Paramanik L, Parida K. Functional facet isotype junction and semiconductor/r-GO minor Schottky barrier tailored In2S3@r-GO@(040/110)-BiVO4 ternary hybrid[J]. J. Colloid Interface Sci., 2021, 585: 519
|
20 |
Chen M Q, Wang Y S, Yang Z L, et al. Effect of Mg-modified mesoporous Ni/Attapulgite catalysts on catalytic performance and resistance to carbon deposition for ethanol steam reforming[J]. Fuel, 2018, 220: 32
|
21 |
Wang W B, Wang A Q. Recent progress in dispersion of palygorskite crystal bundles for nanocomposites[J]. Appl. Clay Sci., 2016, 119: 18
|
22 |
Liu H, Xiang J R, Wang J W, et al. Performance of depolymerized attapulgite-loaded nano-Fe/Ni composite in dechlorination of 2, 4-dichlorophenol from aqueous solution[J]. J. Wuhan Univ. Sci. Technol., 2023, 46(2): 101
|
22 |
刘 红, 向金蓉, 王珺雯 等. 解聚凹凸棒土负载纳米Fe/Ni材料对水中2, 4-二氯酚的脱氯降解性能[J]. 武汉科技大学学报, 2023, 46(2): 101
|
23 |
Li X Y, Peng K. Hydrothermal synthesis of MoS2 nanosheet/palygorskite nanofiber hybrid nanostructures for enhanced catalytic activity[J]. Appl. Clay Sci., 2018, 162: 175
|
24 |
Huang B Y, Zhang Z X, Zhao C H, et al. Enhanced gas-sensing performance of ZnO@In2O3 core@ shell nanofibers prepared by coaxial electrospinning[J]. Sens. Actuators, 2018, 255B: 2248
|
25 |
Liu F Y, Jiang Y, Yang J, et al. MoS2 nanodot decorated In2S3 nanoplates: a novel heterojunction with enhanced photoelectrochemical performance[J]. Chem. Commun., 2016, 52(9): 1867
|
26 |
Li L Q, Yao C J, Wu L, et al. ZnS covering of ZnO nanorods for enhancing UV emission from ZnO[J]. J. Phys. Chem. C, 2021, 125(25): 13732
|
27 |
Ioannidou T, Anagnostopoulou M, Papoulis D, et al. UiO-66/Palygorskite/TiO2 ternary composites as adsorbents and photocatalysts for methyl orange removal[J]. Appl. Sci., 2022, 12(16): 8223
|
28 |
Zhang J, Zhang T, Liang X C, et al. Efficient photocatalysis of CrVI and methylene blue by dispersive palygorskite-loaded zero-valent iron/carbon nitride[J]. Appl. Clay Sci., 2020, 198: 105817
|
29 |
Lan M, Fan G L, Yang L, et al. Enhanced visible-light-induced photocatalytic performance of a novel ternary semiconductor coupling system based on hybrid Zn-In mixed metal oxide/g-C3N4 composites[J]. RSC Adv., 2015, 5(8): 5725
|
30 |
Zhang L Z, Li Y N, Wang M Q, et al. The construction of ZnS-In2S3 nanonests and their heterojunction boosted visible-light photocatalytic/photoelectrocatalytic performance[J]. New J. Chem., 2019, 43(36): 14402
|
31 |
Valente J S, Tzompantzi F, Prince J, et al. Adsorption and photocatalytic degradation of phenol and 2, 4 dichlorophenoxiacetic acid by Mg-Zn-Al layered double hydroxides[J]. Appl. Catal., 2009, 90B(3-4) : 330
|
32 |
Yuan X Z, Jiang L B, Liang J, et al. In-situ synthesis of 3D microsphere-like In2S3/InVO4 heterojunction with efficient photocatalytic activity for tetracycline degradation under visible light irradiation[J]. Chem. Eng. J., 2019, 356: 371
|
33 |
Zhou L C. Preparation of fluorine modified titanium dioxide catalyst and its photocatalytic degradation for oilfield wastewater[J]. Chin. J. Mater. Res., 2024, 38(2): 141
|
33 |
周立臣. 等离子体氟改性TiO2催化剂的制备及其光催化性能[J]. 材料研究学报, 2024, 38(2): 141
|
34 |
Li X Z, He C L, Zuo S X, et al. Photocatalytic nitrogen fixation over fluoride/attapulgite nanocomposite: Effect of upconversion and fluorine vacancy[J]. Sol. Energy, 2019, 191: 251
|
35 |
Gunnagol R M, Rabinal M H K. TiO2-graphene nanocomposites for effective photocatalytic degradation of Rhodamine-B dye[J]. ChemistrySelect, 2018, 3(9): 2578
|
36 |
Lin Y, Yang C P, Wu S H, et al. Construction of built-in electric field within silver phosphate photocatalyst for enhanced removal of recalcitrant organic pollutants[J]. Adv. Funct. Mater., 2020, 30(38): 2002918
|
37 |
Hou J, Yang P Z, Deng Q H, et al. Preparation and performance of graphite/TiO2 composite photocatalyst[J]. Chin. J. Mater. Res., 2021, 35(9): 703
|
37 |
侯 静, 杨培志, 郑勤红 等. 石墨/TiO2复合光催化剂的制备和性能[J]. 材料研究学报, 2021, 35(9): 703
|
38 |
Liang X, Jiang Y L, Cui F K, et al. Catalyst for preparation of succinic anhydride by hydrogenation of maleic anhydride and preparation method thereof [P]. Chin Pat., 110227469A, 2019
|
38 |
梁 旭, 蒋元力, 崔发科 等. 一种顺酐加氢制备丁二酸酐的催化剂及其制备方法 [P]. 中国专利, 110227469A, 2019)
|
39 |
Wang Y J, Lu K C, Feng C G. Influence of inorganic anions and organic additives on photocatalytic degradation of methyl orange with supported polyoxometalates as photocatalyst[J]. J. Rare Earth, 2013, 31(4): 360
|
40 |
Hu C, Yu J C, Hao Z, et al. Effects of acidity and inorganic ions on the photocatalytic degradation of different azo dyes[J]. Appl. Catal., 2003, 46B(1) : 35
|
41 |
Zhang X L, Zhang N, Gan C X, et al. Synthesis of In2S3/UiO-66 hybrid with enhanced photocatalytic activity towards methyl orange and tetracycline hydrochloride degradation under visible-light irradiation[J]. Mat. Sci. Semicon. Proc., 2019, 91: 212
|
42 |
Qiao Z, Yan T J, Li W J, et al. In situ anion exchange synthesis of In2S3/In(OH)3 heterostructures for efficient photocatalytic degradation of MO under solar light[J]. New J. Chem., 2017, 41(8): 3134
|
43 |
Zeng L, Peng T J, Sun H J, et al. Synthesis and photocatalytic activity in visible light of Mn-doped LaNi1- x Mn x O3 [J]. Chin. Mater. Rep., 2021, 35(24): 24018
|
43 |
曾 鹂, 彭同江, 孙红娟 等. Mn掺杂LaNi1- x Mn x O3的合成及在可见光下的光催化活性[J]. 材料导报, 2021, 35(24): 24018
|
44 |
Sloman S R I, Sain S, Olszówka J, et al. Reducing indium dependence by heterostructure design in SnO2-In2S3 nanocomposites[J]. Mater. Chem. Phys., 2022, 277: 125463
|
45 |
Yang X P, Luo Z, Wang D, et al. Simple hydrothermal preparation of sulfur fluoride-doped g-C3N4 and its photocatalytic degradation of methyl orange[J]. Mat. Sci. Eng., 2023, 288B: 116216
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|