Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (4): 305-313    DOI: 10.11901/1005.3093.2024.140
  研究论文 本期目录 | 过刊浏览 |
焊接热源模式对5083-H111铝合金接头性能的影响
符纯国1,2, 徐世伟1,2, 杨晓益1,2(), 李萌蘖1,2()
1.昆明理工大学材料科学与工程学院 昆明 650032
2.云南省高端轻合金集成计算材料工程重点实验室 昆明 650032
Effect of Welding Heat Source Mode on Microstructure and Properties of Weld Joints for 5083-H111 Al-alloy
FU Chunguo1,2, XU Shiwei1,2, YANG Xiaoyi1,2(), LI Mengnie1,2()
1.Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650032, China
2.Yunnan Key Laboratory of Integrated Computational Materials Engineering for Advanced Light Metals, Kunming 650032, China
引用本文:

符纯国, 徐世伟, 杨晓益, 李萌蘖. 焊接热源模式对5083-H111铝合金接头性能的影响[J]. 材料研究学报, 2025, 39(4): 305-313.
Chunguo FU, Shiwei XU, Xiaoyi YANG, Mengnie LI. Effect of Welding Heat Source Mode on Microstructure and Properties of Weld Joints for 5083-H111 Al-alloy[J]. Chinese Journal of Materials Research, 2025, 39(4): 305-313.

全文: PDF(18019 KB)   HTML
摘要: 

在焊接热输入相同的条件下对比研究了直流反接的熔化极惰性气体保护焊(Gas metal arc welding,GMAW)中直流脉冲模式(Pulsed gas metal arc welding,P-GMAW)和恒流模式(Constant current gas metal arc welding,CC-GMAW)对5083-H111铝合金薄板焊接接头的成形、微观组织和力学性能等的影响。结果表明:5083铝合金P-GMAW焊接接头成型平整美观,脉冲在一定程度上抑制了焊缝气孔的生成。热输入相同时P-GMAW焊缝内生成的柱状晶面积占比更大,表明P-GMAW热源焊接的熔池温度梯度更大。两种模式焊缝的力学性能相近,接头强度约为288~303 MPa,达到了母材抗拉强度的90%。接头的断裂位置均在焊缝区,断口呈韧性断裂的韧窝形貌,焊缝强度的降低与其粗大的晶粒和气孔缺陷有关。

关键词 金属材料P-GMAWCC-GMAW宏观成形力学性能微观组织    
Abstract

5083 Al-alloy with high strength, good corrosion resistance and thermal stability, is widely used in welding manufacturing. In this paper, by setting the same welding heat input, the welded joints of 5083-H111 Al-alloy sheets were prepared by gas metal arc welding techniques with the applying either pulsed direct current or constant direct current, respectively. Then the effect of welding techniques on the formation, microstructure and mechanical properties of welded joints were studied via metalloscopy, material mechanics testing machine, microhardness tester, and scanning electron microscope with EDS. The results indicate that the pulsed GMAW welds are smoother with better appearance, indicating that the arc pulses can partially inhibit the porosity formation of the weld joints. The area of columnar crystals formed in the Pulsed GMAW welds is larger, indicating that the temperature gradient of the molten pool is larger during pulsed arc welding. The mechanical properties of the weld joints were similar for the two current modes, which presented the joint strengths about 288~303 MPa corresponding to 90% that of the base metal. Fractures of the tensile samples occur in the weld metal, and the fracture surfaces reveal dimples. The decrease of weld strength is attributed to the presence of coarse grains and porosity.

Key wordsmetallic materials    P-GMAW    CC-GMAW    macro forming    mechanical properties    microstructure
收稿日期: 2024-04-01     
ZTFLH:  TG444  
基金资助:云南省基础研究计划(202501AT070354);云南省重点研发计划(202203AE140011)
通讯作者: 杨晓益,副教授,yangxiaoyi@kust.edu.cn,研究方向为先进焊接及电弧增材制造李萌蘖,教授,limengnie@kust.edu.cn,研究方向为金属材料加工集成计算材料工程方面研究
Corresponding author: YANG Xiaoyi, Tel: (0871)65915828, E-mail: yangxiaoyi@kust.edu.cnLI Mengnie, Tel: (0871)65109952, E-mail: limengnie@kust.edu.cn
作者简介: 符纯国,男,1999年生,硕士生
NameSiFeCuMnMgCrZnTiZrAl
5083-H1110.070.250.040.664.130.080.020.030.20Bal.
ER50870.090.180.030.714.710.080.010.080.12Bal.
表1  5083-H111铝合金和ER5087焊丝的主要化学成分
GroupNameHeat input / J·mm-1Current / AVoltage / VGas flow / L·min-1Wire feed rate / m·min-1Welding speed / mm·s-1
1#P-GMAW Ⅰ27613019.020-257.57.5
CC-GMAW Ⅰ26514015.720-259.77.5
2#P-GMAW Ⅱ30714019.520-258.07.5
CC-GMAW Ⅱ31815016.920-259.97.5
表2  焊接工艺参数
图1  取样示意图
图2  焊接电流电压的波形
图3  宏观成型图
GroupNameWeld porosity / %Maximum pore diameter / mm
1#P-GMAW Ⅰ0-
CC-GMAW Ⅰ0.11.2
2#P-GMAW Ⅱ0.11.6
CC-GMAW Ⅱ0.20.9
表3  不同焊接模式WZ内的气孔率
图4  WZ截面的偏光组织
图5  组织形貌与G和R的关系
GroupNameAverage grain size / μmProportion of columnar area / %Proportion of equiaxed area / %
1#P-GMAW Ⅰ27643.856.2
CC-GMAW Ⅰ17017.882.2
2#P-GMAW Ⅱ32856.543.5
CC-GMAW Ⅱ24631.768.3
表4  WZ组织的统计
图6  WZ和母材组织
图7  P-GMAW Ⅰ 组织的EDS图
图8  接头截面硬度的分布
图9  焊接接头和母材的应力-应变曲线
图10  断口的组织
图11  WZ和母材的细晶强化效应的统计
1 Wang H L, Zeng X H, Zhang X M, et al. Microstructure and properties of 5083 and 6061 aluminum alloy dissimilar stir friction welded joints [J]. Chin. J. Mater. Res., 2018, 32(6): 473
1 王洪亮, 曾祥浩, 张欣盟 等. 5083和6061铝合金异种搅拌摩擦焊接接头的组织和性能 [J]. 材料研究学报, 2018, 32(6): 473
doi: 10.11901/1005.3093.2017.634
2 Goswami R, Spanos G, Pao P S, et al. Precipitation behavior of the phase in Al-5083 [J]. Mater. Sci. Eng. A, 2010, 527(4-5): 1089
3 Kaibyshev R, Musin F, Lesuer D R, et al. Superplastic behavior of an Al-Mg alloy at elevated temperatures [J]. Mater. Sci. Eng. A, 2003, 342(1-2): 169
4 Umar M, Sathiya P. Influence of melting current pulse duration on microstructural features and mechanical properties of AA5083 alloy weldments [J]. Mater. Sci. Eng. A, 2019, (746): 746
5 Reddy G M, Gokhale A A, Rao K P. Optimisation of pulse frequency in pulsed current gas tungsten arc welding of aluminium-lithium alloy sheets [J]. Mater. Sci. Technol., 2014, 14(1): 61
6 Kumar A, Sundarrajan S. Effect of welding parameters on mechanical properties and optimization of pulsed TIG welding of Al-Mg-Si alloy [J]. Inter. J. Adv. Manufact. Technol., 2009, 42(1-2): 118
7 Kuang X, Qi B, Zheng H. Effect of pulse mode and frequency on microstructure and properties of 2219 aluminum alloy by ultrahigh-frequency pulse Metal-Inert Gas Welding [J]. J. Mater. Res. Technol., 2022, 20: 3391
8 Wang Y, Cong B, Qi B, et al. Influence of low-pulsed frequency on arc profile and weld formation characteristics in double-pulsed VPTIG welding of aluminium alloys [J]. J. Manufact. Pro., 2020, 58: 1211
9 Zhu X, Yang X Y, Lu X, et al. Effect of arc pulse on the microstructure and properties of 6005A-T6 aluminum alloy CMT-P welded joints [J]. Mater. Rep., 2024, 38(23): 23090035
9 朱 轩, 杨晓益, 陆 鑫 等. 电弧脉冲对6005A-T6铝合金CMT-P焊接接头组织和性能的影响 [J]. 材料导报, 2024, 38(23): 23090035
10 Li G N. Research on droplet transition behavior and weld formation of aluminum alloy GMAW welding [D]. Taiyuan: North China University, 2024
10 黎国宁. 铝合金GMAW焊接熔滴过渡行为及焊缝成形研究 [D]. 太原: 中北大学, 2024
11 Yang M, Yang Z, Cong B, et al. How ultra high frequency of pulsed gas tungsten arc welding affects weld porosity of Ti-6Al-4V alloy [J]. Inter. J. Adv. Manufact. Technol., 2015, 76: 955
12 Li C, Liu K, Chen X G. Improvement of elevated-temperature strength and recrystallization resistance via Mn-containing dispersoid strengthening in Al-Mg-Si 6082 alloys [J]. J. Mater. Sci. Technol., 2020, 39: 135
doi: 10.1016/j.jmst.2019.08.027
13 Li H, Zou J, Yao J, et al. The effect of TIG welding techniques on microstructure, properties and porosity of the welded joint of 2219 aluminum alloy [J]. J. Alloy. Compd., 2017, 727: 531
14 Choudhury S D, Khan W N, Lyu Z, et al. Failure analysis of blowholes in welded boiler water walls [J]. Eng. Fail. Analys., 2023, 153: 107560
15 Nie J J, Gong Z X, Sun J L, et al. Microstructure and properties of 2195-2219 heterogeneous aluminum alloy welded joints [J]. Chin. J. Mater. Res., 2023, 37(2): 152
15 聂敬敬, 龚政轩, 孙京丽 等. 2195-2219异种铝合金焊接接头的微观组织和性能 [J]. 材料研究学报, 2023, 37(2): 152
doi: 10.11901/1005.3093.2022.057
16 Hansen N. Hall-Petch relation and boundary strengthening [J]. Scr. Mater., 2024, 51: 801
[1] 陈室雨, 李卫, 旷海燕, 高绍巍, 庞东方. 一种稀土Lu3+ 掺杂无铅压电陶瓷的介电、铁电和压电性能[J]. 材料研究学报, 2025, 39(4): 272-280.
[2] 胥聪敏, 孙姝雯, 朱文胜, 陈志强, 李城臣. 三元复配杀菌剂对P110钢腐蚀行为的影响[J]. 材料研究学报, 2025, 39(4): 281-288.
[3] 张慧芳, 吴浩, 肖传民, 李奇, 谢君, 李金国, 王振江, 于金江. 热处理对一种 γʹ 沉淀强化钴基高温合金拉伸性能的影响[J]. 材料研究学报, 2025, 39(3): 198-206.
[4] 冉子祚, 张爽, 苏兆翼, 王阳, 邹存磊, 赵亚军, 王增睿, 姜薇薇, 董晨希, 董闯. 基于团簇式的316不锈钢成分优化及其实验验证[J]. 材料研究学报, 2025, 39(3): 207-216.
[5] 胡明, 张新全, 李伟强, 杨晓康, 黄金湖, 雷晓飞, 邱建科, 董利民. FeCu的含量对TC10钛合金棒材力学性能的影响[J]. 材料研究学报, 2025, 39(3): 217-224.
[6] 于兴福, 西克宇, 张宏伟, 王全振, 郝天赐, 郑冬月, 苏勇. 离子渗氮后的扩散处理对7Cr7Mo2V2Si冷作模具钢性能的影响[J]. 材料研究学报, 2025, 39(3): 225-232.
[7] 钟伟杰, 焦东玲, 刘仲武, 刘娜, 许文勇, 李周, 张国庆. 热等静压态镍基高温合金的高温氧化[J]. 材料研究学报, 2025, 39(3): 172-184.
[8] 胡彭钦, 王栋, 卢玉章, 张健. 热工艺对一种镍基单晶高温合金蠕变性能的影响[J]. 材料研究学报, 2025, 39(3): 161-171.
[9] 朱国豪, 陈平, 徐计雷, 孙慧敏. 低聚聚酰亚胺(SPI)改性的聚酰亚胺(PI)固化物的制备和性能[J]. 材料研究学报, 2025, 39(2): 103-112.
[10] 胥聪敏, 李雪丽, 付安庆, 孙姝雯, 陈志强, 李城臣. 复配杀菌缓蚀剂对N80钢在SRB环境中微生物腐蚀行为的影响[J]. 材料研究学报, 2025, 39(2): 145-152.
[11] 吴晓祺, 万红江, 明洪亮, 王俭秋, 柯伟, 韩恩厚. 原位小冲头压缩速率对X65管线钢氢脆敏感性的影响[J]. 材料研究学报, 2025, 39(2): 92-102.
[12] 马修戈, 吴庆辉, 庞建超, 刘增乾, 李守新, 骆凯伦, 张哲峰. 晶界取向差对双晶高温合金常温和高温拉伸性能的影响[J]. 材料研究学报, 2025, 39(2): 81-91.
[13] 袁鸿渊, 张思倩, 王栋, 张英建, 马力, 于明涵, 张浩宇, 周舸, 陈立佳. 长时热暴露对一种热障涂层/DZ411镍基高温合金体系界面组织演变的影响[J]. 材料研究学报, 2025, 39(2): 113-125.
[14] 徐展源, 赵伟, 史湘石, 张振宇, 王中钢, 韩勇, 范景莲. 成分调节对软磁MnZn铁氧体结构和磁性的影响[J]. 材料研究学报, 2025, 39(1): 55-62.
[15] 韩珩, 李洪峤, 李鹏, 马国政, 郭伟玲, 刘明. 冷喷涂温度对Ni-Ti3AlC2复合涂层摩擦学性能的影响[J]. 材料研究学报, 2025, 39(1): 44-54.