Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (2): 145-152    DOI: 10.11901/1005.3093.2023.602
  研究论文 本期目录 | 过刊浏览 |
复配杀菌缓蚀剂对N80钢在SRB环境中微生物腐蚀行为的影响
胥聪敏1(), 李雪丽1, 付安庆2, 孙姝雯1, 陈志强1, 李城臣1
1 西安石油大学材料科学与工程学院 西安 710065
2 中国石油集团工程材料研究院有限公司 石油管材及装备材料服役行为与结构安全国家重点实验室 西安 710077
Effect of Compound Bactericidal Corrosion Inhibitor on Corrosion Behavior of N80 Steel at Different Temperatures
XU Congmin1(), LI Xueli1, FU Anqing2, SUN Shuwen1, CHEN Zhiqiang1, LI Chengchen1
1 School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China
2 State Key Laboratory for Performancce and Structure Safety of Petroleum Tubular Goods and Equipment Materials, CNPC Tubular Goods Research Institute, Xi'an 710077, China
引用本文:

胥聪敏, 李雪丽, 付安庆, 孙姝雯, 陈志强, 李城臣. 复配杀菌缓蚀剂对N80钢在SRB环境中微生物腐蚀行为的影响[J]. 材料研究学报, 2025, 39(2): 145-152.
Congmin XU, Xueli LI, Anqing FU, Shuwen SUN, Zhiqiang CHEN, Chengchen LI. Effect of Compound Bactericidal Corrosion Inhibitor on Corrosion Behavior of N80 Steel at Different Temperatures[J]. Chinese Journal of Materials Research, 2025, 39(2): 145-152.

全文: PDF(4780 KB)   HTML
摘要: 

采用生物培养技术、失重实验、电化学测试和表面分析等手段研究了硫酸盐还原菌(SRB)在不同温度对N80钢腐蚀行为的影响和在SRB环境中复配杀菌缓蚀剂对N80钢缓蚀性能的影响。结果表明,N80钢在不同温度的腐蚀速率与SRB的活性成正比,37 ℃活性最高的SRB使N80钢表面的极化电阻Rp最小,腐蚀最严重,腐蚀速率(0.03553 mm/a)最高,分别是20和50 ℃时的1.53倍和1.16倍。加入复配杀菌缓蚀剂使N80钢20和37 ℃的Rp值显著增大,腐蚀受到抑制,缓蚀率分别高达65.45%与64.79%。其原因是,复配杀菌缓蚀剂中的杀菌剂四羟甲基硫酸磷(THPS)中的亲油基团羟甲基进入细菌细胞膜改变了蛋白质的特性而使细菌死亡;增效渗透剂二甲基亚砜促进THPS的羟甲基进入细菌细胞膜内提高了杀菌效果;而杀菌增强剂D-络氨酸作为信号分子使生物膜分解脱落,破坏了浓差环境,使腐蚀减缓;缓蚀剂中的壳聚糖与Fe2+结合生成一层保护膜保护了基体,从而降低了腐蚀速率。N80钢在50 ℃的缓蚀率仅为0.26%,因为过高温度使缓蚀剂分子的运动加剧,使吸附在N80钢表面的分子解吸率提高和吸附膜解离,导致缓蚀率下降到极低。

关键词 金属材料硫酸盐还原菌复配杀菌缓蚀剂生物膜腐蚀行为    
Abstract

The effect of sulfate-reducing bacteria (SRB) on the corrosion behavior of N80 steel in SRB containing solution at 20, 37 and 50 oC, and for this case the effectiveness of a compound bactericidal corrosion inhibitor in the bactericidal effect and corrosion inhibition performance of N80 steel were comparatively investigated via biological culture technique, weightlessness measurement electrochemical testing, and surface analysis etc. The results showed that the corrosion rate of N80 steel was proportional to the SRB activity at different temperatures. The SRB activity was the highest at 37 oC, the polarization resistance Rp of N80 steel was the smallest, and the corrosion rate (0.03553 mm/a) was the largest, which was 1.53 times of that at 20 oC and 1.16 times of that at 50 oC, thus the corrosion was the most serious. However, after adding the compoundbactericidal corrosion inhibitor, the Rp value of N80 steel at 20 and 37 oC were increased significantly, and the corrosion of the steel was effectively inhibitedwith corrosion inhibitionefficiency of 65.45% and 64.79%, respectively. This is mainly due to that the lipophilic group hydroxymethyl of the bactericide tetrahydroxymethyl phosphate sulfate (THPS), as one of the components of the compound bactericide corrosion inhibitor, enters the bacterial cell membrane, changes its protein properties, then resulting in bacteria death; Meanwhile the dimethyl sulfoxide promotes the hydroxymethyl of THPS to enter the bacterial cell membrane and enhances the bactericidal effect. As a signal molecule, D-tyrosine, a bactericidal enhancer, promotes the decomposition of biofilm, destroys the surrounding concentration difference, thus slows down the corrosion. The Chitosan in the corrosion inhibitor combined with Fe2+ to produce a protective film to protect the substrate, thereby, reducing the corrosion rate. However, at 50 oC, the corrosion inhibition efficiency for N80 steel was only 0.26%, which is due to that the excessive temperature intensifies the movement of corrosion inhibitor molecular, increase in the molecular desorption rate adsorbed on the surface of N80 steel and the dissociates the adsorption film, resulting in a very low corrosion inhibition efficiency.

Key wordsmetallic materials    sulfate-reducing bacteria (SRB)    compound bactericidal corrosion inhibitor    biofilm    corrosion behavior
收稿日期: 2023-12-25     
ZTFLH:  TQ 152  
基金资助:国家自然科学基金(51974245);国家自然科学基金(21808182);陕西省重点研发计划(2020GY-234);西安石油大学材料科学与工程学院西安市高性能油气田材料重点实验室,陕西省高等学校重点实验室“油气田腐蚀防护与新材料”,西安石油大学研究生创新与实践能力培养项目(YCS22213138)
通讯作者: 胥聪敏,教授,cmxu@xsyu.edu.cn,研究方向为金属腐蚀与防护
Corresponding author: XU Congmin, Tel: 18092078500, E-mail: cmxu@xsyu.edu.cn
作者简介: 胥聪敏,女,1977年生,博士
图1  SRB在不同温度生长14 d的细菌浓度和硫化物含量
Temperature20 oC37 oC50 oC
SRB bactericidal rate92.05%99.00%49.05%
表1  复配杀菌缓蚀剂在不同温度下对SRB的杀菌率
图2  N80钢在不同温度的SRB溶液中腐蚀14 d后的质量损失
Temperature20 oC37 oC50 oC
Corrosion inhibition rate (η)65.45%64.79%0.26%
表2  复配杀菌缓蚀剂对N80钢在不同温度下的缓蚀率
图3  N80钢在不同温度SRB溶液中腐蚀14 d后的Nyquist、Bode以及拟合曲线
TemperatureRsYfnfRfYdlndlRctWEquivalent circuit
Without adding compound bactericidal corrosion inhibitor
20 oC16.246.14 × 10-31.0042.197.716 × 10-20.977756.3-Fig.4a
37 oC16.369.30 × 10-20.95361.91.054 × 10-20.699.43-Fig.4a
50 oC10.085.16 × 10-41.00447.94.689 × 10-41.00307.4-Fig.4a
Adding compound bactericidal corrosion inhibitor
20 oC19.812.98 × 10-31.00192.31.256 × 10-30.872960-Fig.4a
37 oC19.761.69 × 10-31.0099372.50 × 10-30.8610.11-Fig.4a
50 oC19.136.42 × 10-40.91482.21.747 × 10-30.8850.363.75 × 10-3Fig.4b
表3  N80在不同温度SRB溶液中腐蚀14 d的EIS拟合结果
图4  EIS数据拟合的等效电路模型
图5  N80钢在不同温度的SRB溶液中腐蚀14 d后的Rp-1图
图6  N80钢在不同温度SRB溶液中腐蚀14 d后的SEM照片和EDS图
图7  N80钢在SRB溶液中腐蚀14 d后的XRD谱和腐蚀产物的含量
1 Feng S Q, Li Y C, Liu H M, et al. Microbiologically influenced corrosion of carbon steel pipeline in shale gas field produced water containing CO2 and polyacrylamide inhibitor [J]. J. Nat. Gas Sci. Eng., 2020, 80: 103395
2 Zheng L, Cheng S K, Han Y Z, et al. Bio-natural gas industry in China: current status and development [J]. Renew. Sustain. Energy Rev., 2020, 128: 109925
3 Liu H X, Jin Z Y, Liu H F, et al. Microbiological corrosion acceleration of N80 steel in shale gas field produced water containing Citrobacter amalonaticus at 60 oC [J]. Bioelectrochemistry, 2022, 148: 108253
4 Shi L, Luo K, Wang J G, et al. Failure analysis of an offshore drilling casing under harsh working conditions [J]. Eng. Fail. Anal., 2021, 120: 105018
5 Wang H, Zhao W L, Shu Z H, et al. Failure analysis of casing dropping in shale oil well during large scale volume fracturing [J]. Eng. Fail. Anal., 2020, 118: 104849
6 Liu T, Cheng Y F, Sharma M, et al. Effect of fluid flow on biofilm formation and microbiologically influenced corrosion of pipelines in oilfield produced water [J]. J. Pet. Sci. Eng., 2017, 156: 451
7 Liao W Z, Yuan J T, Wang X D, et al. Under-deposit microbial corrosion of X65 pipeline steel in the simulated shale gas production environment [J]. Int. J. Electrochem. Sci., 2023, 18: 100069
8 Yang S, Lai F P, Li Z P, et al. The effect of temperature on flowback data analysis in shale gas reservoirs: a simulation-based study [J]. Energies, 2019, 12: 3751
9 Salgar-Chaparro S J, Lepkova K, Pojtanabuntoeng T, et al. Microbiologically influenced corrosion as a function of environmental conditions: a laboratory study using oilfield multispecies biofilms [J]. Corros. Sci., 2020, 169: 108595
10 Xu C M, Zhang J R, Zhu W S, et al. Effect of D-amino acids on corrosion behavior of different steels due to mixed bacteria [J]. Chin. J. Mater. Res., 2023, 37(12): 924
doi: 10.11901/1005.3093.2022.656
10 胥聪敏, 张津瑞, 朱文胜 等. D-氨基酸对不同钢材混合菌腐蚀行为的影响 [J]. 材料研究学报, 2023, 37(12): 924
doi: 10.11901/1005.3093.2022.656
11 Jia R, Yang D Q, Li Y C, et al. Mitigation of the Desulfovibrio vulgaris biofilm using alkyldimethylbenzylammonium chloride enhanced by D-amino acids [J]. Int. Biodeterior. Biodegrad., 2017, 117: 97
12 Unsal T, Wang D, Kumseranee S, et al. D-Tyrosine enhancement of microbiocide mitigation of carbon steel corrosion by a sulfate reducing bacterium biofilm [J]. World J. Microbiol. Biotechnol., 2021, 37: 103
13 Liu H W, Fu C Y, Gu T Y, et al. Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water [J]. Corros. Sci., 2015, 100: 484
14 Shang T, Tian J C, Liu X, et al. Genesis analysis of the petroleum associated H2S: a case study of Pengyang oilfield in Ordos Basin [J]. Acta Petrol. Sin., 2022, 43(5): 595
14 尚 婷, 田景春, 刘 鑫 等. 石油伴生H2S的成因分析——以鄂尔多斯盆地彭阳油田为例 [J]. 石油学报, 2022, 43(5): 595
15 Gateman S M, Gharbi O, de Melo H G, et al. On the use of a constant phase element (CPE) in electrochemistry [J]. Curr. Opin. Electrochem., 2022, 36: 101133
16 Xu C M, Wang W Y, Liu L, et al. The inhibition effect of D-amino acid on the microbial corrosion of mixed bacteria [J]. Nat. Gas Ind., 2021, 41(2): 160
16 胥聪敏, 王文渊, 刘 利 等. D-氨基酸对混合菌生物腐蚀的缓蚀行为影响分析 [J]. 天然气工业, 2021, 41(2): 160
17 Tang H Q, Guo Z H, Zhang J H, et al. Effects of sulfate reducing bacteria on anaerobic corrosion of mild steel [J]. J. Chin. Soc. Corros. Prot., 1991, 11(1): 46
17 唐和清, 郭稚弧, 张君华 等. 硫酸盐还原菌对碳钢腐蚀的影响 [J]. 中国腐蚀与防护学报, 1991, 11(1): 46
18 Liu H, Du Y M, Wang X H, et al. Chitosan kills bacteria through cell membrane damage [J]. Int. J. Food Microbiol., 2004, 95(2): 147
pmid: 15282127
19 Song D, Yu W, Yang H. Scale and corrosion inhibition performance of carboxymethyl chitosan [J]. Sci. Sin. Chim., 2021, 51(5): 566
19 宋 荻, 余 伟, 杨 琥. 羧甲基壳聚糖阻垢缓蚀性能研究 [J]. 中国科学: 化学, 2021, 51(5): 566
20 Tan F N, Pang X H, Sui W P, et al. The mechanism and inhibition effect on chitosan for mild steel in 1 mol/L HCl [J]. Mar. Sci., 2011, 35(7): 40
20 谭福能, 庞雪辉, 隋卫平 等. 壳聚糖在1 mol/L HCl中对Q235碳钢的缓蚀性能及机理研究 [J]. 海洋科学, 2011, 35(7): 40
21 Xu C M, Gao H R, Zhu W S, et al. Study on the behavior and mechanism of D-amino acid dispersing biofilm [J]. Mater. Rep., 2023, 37(1): 243
21 胥聪敏, 高豪然, 朱文胜 等. D-氨基酸驱散生物膜的行为与作用机理研究 [J]. 材料导报, 2023, 37(1): 243
[1] 胥聪敏 孙姝雯 朱文胜 陈志强 李城臣. 不同油水比环境下三元复配杀菌剂对P110钢腐蚀行为的影响[J]. 材料研究学报, 2025, (4): 0-0.
[2] 冉子祚, 张爽, 苏兆翼, 王阳, 邹存磊, 赵亚军, 王增睿, 姜薇薇, 董晨希, 董闯. 基于团簇式的316不锈钢成分优化及其实验验证[J]. 材料研究学报, 2025, 39(3): 207-216.
[3] 张慧芳, 吴浩, 肖传民, 李奇, 谢君, 李金国, 王振江, 于金江. 热处理对一种 γʹ 沉淀强化钴基高温合金拉伸性能的影响[J]. 材料研究学报, 2025, 39(3): 198-206.
[4] 钟伟杰, 焦东玲, 刘仲武, 刘娜, 许文勇, 李周, 张国庆. 热等静压态镍基高温合金的高温氧化[J]. 材料研究学报, 2025, 39(3): 172-184.
[5] 胡彭钦, 王栋, 卢玉章, 张健. 热工艺对一种镍基单晶高温合金蠕变性能的影响[J]. 材料研究学报, 2025, 39(3): 161-171.
[6] 胡明, 张新全, 李伟强, 杨晓康, 黄金湖, 雷晓飞, 邱建科, 董利民. FeCu的含量对TC10钛合金棒材力学性能的影响[J]. 材料研究学报, 2025, 39(3): 217-224.
[7] 于兴福, 西克宇, 张宏伟, 王全振, 郝天赐, 郑冬月, 苏勇. 离子渗氮后的扩散处理对7Cr7Mo2V2Si冷作模具钢性能的影响[J]. 材料研究学报, 2025, 39(3): 225-232.
[8] 吴晓祺, 万红江, 明洪亮, 王俭秋, 柯伟, 韩恩厚. 原位小冲头压缩速率对X65管线钢氢脆敏感性的影响[J]. 材料研究学报, 2025, 39(2): 92-102.
[9] 马修戈, 吴庆辉, 庞建超, 刘增乾, 李守新, 骆凯伦, 张哲峰. 晶界取向差对双晶高温合金常温和高温拉伸性能的影响[J]. 材料研究学报, 2025, 39(2): 81-91.
[10] 袁鸿渊, 张思倩, 王栋, 张英建, 马力, 于明涵, 张浩宇, 周舸, 陈立佳. 长时热暴露对一种热障涂层/DZ411镍基高温合金体系界面组织演变的影响[J]. 材料研究学报, 2025, 39(2): 113-125.
[11] 徐展源, 赵伟, 史湘石, 张振宇, 王中钢, 韩勇, 范景莲. 成分调节对软磁MnZn铁氧体结构和磁性的影响[J]. 材料研究学报, 2025, 39(1): 55-62.
[12] 邓小龙, 王山山, 戴鑫鑫, 刘义, 黄金昭. 非晶态FeOOH修饰的CoFeAl层状双氢氧化物异质结构的制备和对碱性溶液的全解水性能[J]. 材料研究学报, 2025, 39(1): 71-80.
[13] 王娜, 李文彬, 庞建超, 陈立佳, 高崇, 邹成路, 张辉, 李守新, 张哲峰. 增材制造高温合金在不同温度下的拉伸性能与变形机制[J]. 材料研究学报, 2025, 39(1): 1-10.
[14] 牟春浩, 陈文革, 余田亮, 马江江. 红装TA2/Q345复合管扩散焊接头的性能[J]. 材料研究学报, 2025, 39(1): 35-43.
[15] 李培跃, 张明辉, 孙文韬, 鲍志豪, 高琦, 王延枝, 牛龙. CeLaAl-Zn合金微观组织和力学性能的影响[J]. 材料研究学报, 2024, 38(9): 651-658.