Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (2): 153-160    DOI: 10.11901/1005.3093.2023.617
  研究论文 本期目录 | 过刊浏览 |
SiC含量对SiCP/6092铝基复合材料微弧氧化膜耐蚀性的影响
于文静1, 刘春忠1(), 张洪亮1, 卢天倪1, 王东2, 李娜1, 黄震威1
1 沈阳航空航天大学材料科学与工程学院 沈阳 110136
2 中国科学院金属研究所 沈阳 110016
Effect of SiC Content on Microstructure and Corrosion Resistance of Micro-arc Oxidation Film on Composites SiCP/6092 Al-alloy
YU Wenjing1, LIU Chunzhong1(), ZHANG Hongliang1, LU Tianni1, WANG Dong2, LI Na1, HUANG Zhenwei1
1 Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

于文静, 刘春忠, 张洪亮, 卢天倪, 王东, 李娜, 黄震威. SiC含量对SiCP/6092铝基复合材料微弧氧化膜耐蚀性的影响[J]. 材料研究学报, 2025, 39(2): 153-160.
Wenjing YU, Chunzhong LIU, Hongliang ZHANG, Tianni LU, Dong WANG, Na LI, Zhenwei HUANG. Effect of SiC Content on Microstructure and Corrosion Resistance of Micro-arc Oxidation Film on Composites SiCP/6092 Al-alloy[J]. Chinese Journal of Materials Research, 2025, 39(2): 153-160.

全文: PDF(5425 KB)   HTML
摘要: 

在基体中不同SiC含量的SiCP/6092铝基复合材料表面制备微弧氧化膜,使用XRD、SEM和电化学等手段对其表征,研究了SiC含量对氧化膜耐蚀性能的影响。结果表明:这种氧化膜分为致密层和外部疏松层,主要由α-Al2O3γ-Al2O3和Mullite (Al6Si2O13)组成。氧化膜的表面有微小的孔洞,孔隙直径和粗糙度随着SiC含量的提高而减小。随着基体中SiC颗粒含量的提高氧化层的生长速度降低,但是不会分解参与反应。随着SiC含量的提高,氧化膜中疏松层的厚度先减小后增大,致密层的厚度先增大后减小。SiC颗粒含量(体积分数)为17%的SiCP/6092铝基复合材料其表面氧化膜的耐蚀性能最好,腐蚀电压达到-0.466 V、腐蚀电流达到3.82 × 10-9 A·cm-2,极化电阻达到1.0 × 105 Ω·cm2

关键词 材料表面与界面膜层生长微弧氧化SiCP/Al复合材料耐蚀性    
Abstract

Composites of SiCP/6092 Al-alloy with 0%, 17% and 30% SiC (volume fraction) were prepared by powder metallurgy, and then micro-arc oxidation films were made on the composites in sodium silicate electrolyte via micro-arc oxidation facility with an adjustable double pulse power supplier, and then the microstructure and composition, as well as the corrosion resistance of the micro-arc oxidation films were characterized by XRD, SEM, and Auto-Lab methods. The results show that the prepared films composed of an inner dense layer and an external loose layer, which are mainly composed of α-Al2O3, γ-Al2O3 and Mullite. There are many tiny pores on the film surface, and the pore diameter and surface roughness decrease with the increase of SiC content in the matrix. The SiC particles in the matrix have an inhibitory effect during the micro arc oxidation process, thus the growth of the oxide films slows down with the increase of SiC content, but the SiC particles do not decompose to participate in the oxidation reaction. The thickness of the loose layer decreases first and then increases with the increase of SiC content, and the thickness of the dense layer increases first and then decreases with the increase of SiC content. Among others, the oxide film on the composite of SiCP/6092 Al-alloy with 17% SiC (volume fraction) particles had the best corrosion resistance with free corrosion potential of -0.466 V, corrosion current density of 3.82 × 10-9 A·cm-2 and polarization resistance of 1.0 × 105 Ω·cm2.

Key wordsmaterial surface and interface    layer growth    micro-arc oxidation    SiCP/Al composite material    corrosion protection
收稿日期: 2023-12-28     
ZTFLH:  TGN174  
通讯作者: 刘春忠,教授,czliu@sau.edu.cn,研究方向为轻合金及电磁功能材料
Corresponding author: LIU Chunzhong, Tel: 18040038858, E-mail: czliu@sau.edu.cn
作者简介: 于文静,女,1998年生,硕士生
CuMgSiFeZnMnCrAl
0.900.990.730.060.0040.020.005Bal.
表1  6092铝合金的成分
图1  SiCP/6092铝基复合材料微弧氧化膜的XRD谱和主要相的含量
图2  17% SiCP/6092铝基复合材料微弧氧化膜的XRD谱
图3  不同SiC含量的SiCP/6092铝基复合材料微弧氧化膜的SEM形貌
ElementCONaAlSi
0% SiC (volume fraction)-40.401.0651.167.38
17% SiC (volume fraction)4.8447.361.5432.3113.95
30% SiC (volume fraction)36.7935.743.5011.4610.28
表2  SiCP/6092铝基复合材料微弧氧化膜的EDS结果
图4  SiCP/6092铝基复合材料微弧氧化膜的粗糙度和孔隙直径
图5  不同SiC含量的SiCP/6092铝基复合材料的表面微弧氧化膜截面的SEM照片和EDS图
图6  SiCP/6092铝基复合材料微弧氧化膜生长的示意图
图7  在微弧氧化过程中SiC颗粒状态的示意图
图8  SiCP/6092铝基复合材料微弧氧化膜的厚度
图9  SiCP/6092铝基复合材料基体和微弧氧化膜的动电位极化曲线

Samples

(volume fraction)

Ecorr

/ V

Icorr

/ A·cm-2

Rcorr

/ Ω·cm2

0%-0.9033.48 × 10-69.6 × 103
17%-0.6942.27 × 10-64.1 × 103
30%-0.6821.91 × 10-62.9 × 103
MAO-0%-0.5776.66 × 10-98.1 × 104
MAO-17%-0.4663.82 × 10-91.0 × 105
MAO-30%-0.8531.03 × 10-85.9 × 104
表3  SiCP/6092铝基复合材料基体和微弧氧化膜的动电位极化曲线拟合参数
1 Alsrayheen E, McLeod E, Rateick R, et al. Impact of ac/dc spark anodizing on the corrosion resistance of Al-Cu alloys [J]. Electrochim. Acta, 2011, 56(17): 6041
2 Fadaee H, Javidi M. Investigation on the corrosion behaviour and microstructure of 2024-T3 Al alloy treated via plasma electrolytic oxidation [J]. J. Alloys Compd., 2014, 604: 36
3 Allachi H, Chaouket F, Draoui K. Corrosion inhibition of AA6060 aluminium alloy by lanthanide salts in chloride solution [J]. J. Alloy Compd., 2009, 475(1-2): 300
4 Li H X, Rudnev V S, Zheng X H, et al. Characterization of Al2O3 ceramic coatings on 6063 aluminum alloy prepared in borate electrolytes by micro-arc oxidation [J]. J. Alloy Compd., 2008, 462(1-2): 99
5 Hihara L H, Latanision R M. Corrosion of metal matrix composites [J]. Int. Mater. Rev., 1994, 39: 245
6 Paciej R C, Agarwala V S. Influence of processing variables on the corrosion susceptibility of metal-matrix composites [J]. Corrosion, 1988, 44: 680
7 England J, Hall I W. On the effect of the strength of the matrix in metal matrix composites [J]. Scr. Metall., 1986, 20: 697
8 Arsenault R J, Fisher R M. Microstructure of fiber and particulate SiC in 6061 Al composites [J]. Scr. Metall., 1983, 17(1): 67
9 Hihara L H, Latanision R M. Galvanic corrosion of aluminum-matrix composites [J]. Corrosion, 1992, 48: 546
10 Deuis R L, Green L, Subramanian C, et al. Influence of the reinforcement phase on the corrosion of aluminium composite coatings [J]. J. Mater. Sci. Lett., 1997, 16: 440
11 Deuis R L, Green L, Subramanian C, et al. Corrosion behavior of aluminum composite coatings [J]. Corrosion, 1997, 53: 880
12 Wei T B, Tian J, Yan F Y. Structure and wear-resistant properties of ceramic layer on LY12 Al alloy by micro-arc oxidation [J]. Chin. J. Mater. Res., 2004, 18(2): 161
12 魏同波, 田 军, 阎逢元. LY12铝合金微弧氧化陶瓷层的结构和性能 [J]. 材料研究学报, 2004, 18(2): 161
13 Xia L Q, Han J M, Yang S, et al. Growth process of scanning micro arc oxidation coatings on A356 alloy and their corrosion resistance [J]. Chin. J. Mater. Res., 2016, 30(12): 914
13 夏伶勤, 韩建民, 杨 莎 等. A356铝合金扫描式微弧氧化涂层的成膜过程及耐腐蚀性能 [J]. 材料研究学报, 2016, 30(12): 914
doi: 10.11901/1005.3093.2016.395
14 Gao W, Liu J N, Wei J P, et al. Structure and properties of Cu2O doped micro arc oxidation coating on TC4 titanium alloy [J]. Chin. J. Mater. Res., 2022, 36(6): 409
doi: 10.11901/1005.3093.2021.411
14 高 巍, 刘江南, 魏敬鹏 等. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能 [J]. 材料研究学报, 2022, 36(6): 409
15 Bayati M R, Moshfegh A Z, Golestani-Fard F, et al. (WO3) x -(TiO2)1- x nano-structured porous catalysts grown by micro-arc oxidation method: characterization and formation mechanism [J]. Mater. Chem. Phys., 2010, 124(1): 203
16 Xue W B, Deng Z W, Lai Y, et al. Analysis of phase distribution for ceramic coatings formed by microarc oxidation on aluminum alloy [J]. J. Am. Ceram. Soc., 1998, 81(5): 1365
17 Krishna L R, Purnima A S, Sundararajan G. A comparative study of tribological behavior of microarc oxidation and hard-anodized coatings [J]. Wear, 2006, 261(10): 1095
18 Lee K M, Ko Y G, Shin D H. Incorporation of multi-walled carbon nanotubes into the oxide layer on a 7075 Al alloy coated by plasma electrolytic oxidation: coating structure and corrosion properties [J]. Curr. Appl. Phys., 2011, 11(suppl.4): S55
19 Doolabi D S, Ehteshamzadeh M, Mirhosseini S M M. Effect of NaOH on the structure and corrosion performance of alumina and silica PEO coatings on aluminum [J]. J. Mater. Eng. Perform., 2012, 21(10): 2195
20 Hussein R O, Northwood D O, Nie X. The effect of processing parameters and substrate composition on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloys [J]. Surf. Coat. Technol., 2013, 237: 357
21 Li X J, Zhang M, Wen S, et al. Microstructure and wear resistance of micro-arc oxidation ceramic coatings prepared on 2A50 aluminum alloys [J]. Surf. Coat. Technol., 2020, 394: 125853
22 Sundararajan G, Krishna L R. Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology [J]. Surf. Coat. Technol., 2003, 167: 269
23 Wang Y Q, Wang X J, Gong W X, et al. Effect of SiC particles on microarc oxidation process of magnesium matrix composites [J]. Appl. Surf. Sci., 2013, 283: 906
24 Jiang C Y, Wang Y M, Wang S Q, et al. Growth characteristics and properties of plasma electrolytic oxidation coatings produced in different electrolytes on SiCP/Al composite [J]. Mater. Charact., 2023, 205: 113344
25 Du C Y, Huang S T, Yu X L, et al. Microstructure and properties of plasma electrolytic oxidation coating on 55% SiCP/Al matrix composites [J]. Surf. Coat. Technol., 2021, 420: 127321
26 Hou X Y, Huang H B, Li Y F, et al. Stable and variable—α-alumina: from properties, synthesis to applications [J]. China Ceram. Ind., 2022, 29(5): 30
26 侯欣怡, 黄灏彬, 李一凡 等. 稳定与多变—α-氧化铝: 从性质、合成到应用 [J]. 中国陶瓷工业, 2022, 29(5): 30
27 Tan X Y, Wang X, Yin Y S, et al. Crystal structure and valence electron structure of α-Al2O3 [J]. Chin. J. Nonferrous Met., 2002, 12(suppl.1): 18
27 谭训彦, 王 昕, 尹衍升 等. α-Al2O3的晶体结构与价电子结构 [J]. 中国有色金属学报, 2002, 12(增刊1): 18
28 Tran Q P, Sun J K, Kuo Y C, et al. Anomalous layer-thickening during micro-arc oxidation of 6061 Al alloy [J]. J. Alloy Compd., 2017, 697: 326
29 Sun H O, Li L C, Wang Z Y, et al. Corrosion behaviors of microarc oxidation coating and anodic oxidation on 5083 aluminum alloy [J]. J. Chem., 2020, 2020: 6082812
30 Wang P, Wu T, Xiao Y T, et al. Characterization of micro-arc oxidation coatings on aluminum drillpipes at different current density [J]. Vacuum, 2017, 142: 21
31 Wang D D, Liu X T, Wang Y, et al. Role of the electrolyte composition in establishing plasma discharges and coating growth process during a micro-arc oxidation [J]. Surf. Coat. Technol., 2020, 402: 126349
32 Yeshmanova G, Blawert C, Serdechnova M, et al. Effect of electrolyte composition on the formation of PEO coatings on AA2024 aluminium alloy [J]. Surf. Interfaces, 2024, 44: 103797
33 Kang D D, Feng Y, Han L, et al. Microstructure analysis of α-Al2O3 prepared by aluminum hydroxide [J]. Refractories, 2022, 56(3): 218
33 康冬冬, 冯 雨, 韩 露 等. 氢氧化铝制备α-Al2O3微观结构分析 [J]. 耐火材料, 2022, 56(3): 218
doi: 10.3969/j.issn.1001-1935.2022.03.009
34 Monfort F, Berkani A, Matykina E, et al. Development of anodic coatings on aluminium under sparking conditions in silicate electrolyte [J]. Corros. Sci., 2007, 49(2): 672
35 Guo H F, An M Z. Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate-fluoride solutions and evaluation of corrosion resistance [J]. Appl. Surf. Sci., 2005, 246(1-3): 229
36 Shen D J, Li G L, Guo C H, et al. Microstructure and corrosion behavior of micro-arc oxidation coating on 6061 aluminum alloy pre-treated by high-temperature oxidation [J]. Appl. Surf. Sci., 2013, 287: 451
[1] 李庆鹏 刘佳兴 安晓云 李永智 高萌 孙洪涛 王娜. 基于镀锌紧固件表面高性能硅烷转化膜的制备与性能[J]. 材料研究学报, 2025, (4): 0-0.
[2] 王静, 何文政, 杨爽, 耿闻, 任荣, 熊需海. 氩气等离子体处理对芳Ⅲ/环氧复合材料界面性能的影响[J]. 材料研究学报, 2025, 39(3): 185-197.
[3] 韩珩, 李洪峤, 李鹏, 马国政, 郭伟玲, 刘明. 冷喷涂温度对Ni-Ti3AlC2复合涂层摩擦学性能的影响[J]. 材料研究学报, 2025, 39(1): 44-54.
[4] 黄迪, 牛云松, 李帅, 董志宏, 鲍泽斌, 朱圣龙. 四方相氧化钇稳定氧化锆热障涂层的热循环和热冲击性能及其失效机理[J]. 材料研究学报, 2024, 38(9): 691-700.
[5] 李沅沅, 梁健, 熊自柳, 苗斌, 田秀刚, 齐建军, 郑士建. 新型热镀锌双相钢的合金成分对界面层和镀层结构的影响[J]. 材料研究学报, 2024, 38(6): 446-452.
[6] 张甲, 高明浩, 栾胜家, 徐娜, 常辉, 邓予婷, 侯万良, 常新春. 喷涂粉末对CoNiCrAlY涂层组织和性能的影响[J]. 材料研究学报, 2024, 38(5): 347-355.
[7] 马飞, 王闯, 郭武明, 史祥东, 孙建颖, 庞刚. 碳含量对CrN:a-C多相复合涂层摩擦学性能的影响[J]. 材料研究学报, 2024, 38(4): 297-307.
[8] 陈真勇, 魏欣欣, 徐妍婷, 张波, 马秀良. 电化学渗氮对不锈钢表面结构的影响[J]. 材料研究学报, 2024, 38(3): 161-167.
[9] 闫俊竹, 高明, 于晓明, 谭丽丽. CaAg的含量对可降解Zn-Li-Ca-Ag合金的组织和性能的影响[J]. 材料研究学报, 2024, 38(3): 177-186.
[10] 郝文俊, 敬和民, 席通, 杨春光, 杨柯. 奥氏体化温度对含铜高碳马氏体不锈钢的组织和性能的影响[J]. 材料研究学报, 2024, 38(2): 121-129.
[11] 王慧明, 王金龙, 李应举, 张宏毅, 吕晓仁. Al基复合涂层干摩擦磨损的有限元分析[J]. 材料研究学报, 2024, 38(12): 941-949.
[12] 陈继弘, 王永利, 熊良银, 宋立新. 316L钢表面低活性Fe-Al涂层的制备[J]. 材料研究学报, 2024, 38(11): 801-810.
[13] 李玉峰, 冯峰, 刘世博, 刘丽爽, 高晓辉. 氮磷共掺杂石墨烯的制备及水性复合涂层的耐蚀性能[J]. 材料研究学报, 2024, 38(11): 861-871.
[14] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[15] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.