Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (11): 870-880    DOI: 10.11901/1005.3093.2024.491
  研究论文 本期目录 | 过刊浏览 |
形变热处理对选区激光熔化制备Al8(CoCrNi)92 中熵合金组织及性能的影响
张正统, 吴远慧, 邱应堃, 涂坚()
重庆理工大学材料科学与工程学院 重庆 400054
Effect of Thermo-mechanical Treatment on Microstructure and Properties of Medium-entropy Alloy Al8(CoCrNi)92 Prepared by Selective Laser Melting
ZHANG Zhengtong, WU Yuanhui, QIU Yingkun, TU Jian()
College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
引用本文:

张正统, 吴远慧, 邱应堃, 涂坚. 形变热处理对选区激光熔化制备Al8(CoCrNi)92 中熵合金组织及性能的影响[J]. 材料研究学报, 2025, 39(11): 870-880.
Zhengtong ZHANG, Yuanhui WU, Yingkun QIU, Jian TU. Effect of Thermo-mechanical Treatment on Microstructure and Properties of Medium-entropy Alloy Al8(CoCrNi)92 Prepared by Selective Laser Melting[J]. Chinese Journal of Materials Research, 2025, 39(11): 870-880.

全文: PDF(30277 KB)   HTML
摘要: 

研究了后处理工艺对用选区激光熔化(SLM)技术制备的Al8(CoCrNi)92中熵合金的微观组织和性能的影响。结果表明,SLM打印态合金具有胞状位错结构和典型的柱状晶组织。用后续热处理虽然可诱导这种合金一定程度的再结晶,但是消除宏观缺陷的效果甚微。相比之下,形变热处理能显著优化这种合金的微观结构,几乎完全消除了孔隙和微裂纹并诱导形成多相异质结构,使其硬度显著提高。

关键词 金属材料选区激光熔化形变热处理异质结构    
Abstract

Selective laser melting (SLM) offers a novel pathway for fabricating medium-entropy alloys (MEAs), yet the process inherently introduces defects such as porosity and microcracks, which are challenging to eliminate solely through subsequent heat treatment. Herein, the influence of various post-processing treatments on the microstructure and hardness of an Al8(CoCrNi)92 MEA was assessed. It was found that the as-printed alloy exhibits a typical columnar grain structure with cellular dislocation structure. While subsequent heat treatment alone induced a certain degree of recrystallization, its effect on mitigating macroscopic defects was minimal. In contrast, thermomechanical processing significantly refined the microstructure, nearly eliminated entirely the pores and microcracks, and induced the formation of a heterogeneous multiphase structure, consequently leading to a substantial enhancement in hardness. This research demonstrates that thermomechanical processing, as an effective post-processing route, can optimize the microstructure of SLM-fabricated MEAs, alleviate inherent defects related with the additive manufacturing technique, and markedly improve their mechanical properties.

Key wordsmetallic materials    selective laser melting    thermomechanical treatment    heterogeneous microstructure
收稿日期: 2024-12-12     
ZTFLH:  TG139  
基金资助:重庆理工大学研究生创新项目(gzlcx20233008)
通讯作者: 涂 坚,副教授,tujian@cqut.edu.cn,研究方向为高熵合金组织与性能
Corresponding author: TU Jian, Tel: (023)62563178, E-mail: tujian@cqut.edu.cn
作者简介: 张正统,男,2000年生,硕士
图1  Al8(CoCrNi)92选择性激光熔化(SLM)工艺的示意图
图2  打印态试样和形变态试样的ECCI图
图3  打印态试样和形变态试样的EBSD图
图4  热处理后Al8(CoCrNi)92试样的ECCI图
图5  热处理Al8(CoCrNi)92试样的EBSD图
图6  形变热处理Al8(CoCrNi)92试样的ECCI图
图7  形变热处理Al8(CoCrNi)92试样的EBSD图
图8  形变热处理Al8(CoCrNi)92试样的EDS图
图9  不同后处理Al8(CoCrNi)92试样的XRD谱
图10  不同处理Al8(CoCrNi)92试样的维氏硬度
图11  不同后处理Al8(CoCrNi)92试样的硬度
图12  经过不同后处理Al8(CoCrNi)92试样的微观组织结构演变示意图
[1] Filho F D C G, Ritchie R O, Meyers M A, et al. Cantor-derived medium-entropy alloys: bridging the gap between traditional metallic and high-entropy alloys [J]. J. Mater. Res. Technol., 2022, 17: 1868
[2] Yang Y, Chen T Y, Tan L Z, et al. Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy [J]. Nature, 2021, 595(7866): 245
[3] Liu G, Chen P, Yao X Y, et al. Properties of CrMoTi medimum-entropy alloy and its in situ alloying additive manufacturing [J]. Acta Metall. Sin., 2022, 58: 1055
[3] 刘 广, 陈 鹏, 姚锡禹 等. CrMoTi中熵合金的性能及其原位合金化增材制造 [J]. 金属学报, 2022, 58: 1055
[4] Shi C, Du Y H, Lai L M, et al. Mechanical properties and oxidation resistance of a refractory medium-entropy alloy CrTaTi [J]. Chin. J. Mater. Res., 2023, 37(6): 443
[4] 史 畅, 杜宇航, 赖利民 等. CrTaTi难熔中熵合金的力学性能和抗氧化性能 [J]. 材料研究学报, 2023, 37(6): 443
[5] DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components-process, structure and properties [J]. Prog. Mater. Sci., 2018, 92: 112
[6] Liu G, Zhang X F, Chen X L, et al. Additive manufacturing of structural materials [J]. Mater. Sci. Eng., 2021, 145R: 100596
[7] Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
[8] Yi M L, Tu J, Yang L, et al. Microstructural mechanisms endowing high strength-ductility synergy in CoCrNi medium entropy alloy prepared by laser powder bed fusion [J]. Addit. Manuf., 2024, 87: 104229
[9] Pan C L, Li X Q, Luo H, et al. Tuning the strength and ductility balance of a Co32Cr36Ni32 medium entropy alloy fabricated by selective laser melting: effect of segregations along grain boundaries [J]. Mater. Sci. Eng., 2022, 840A: 142923
[10] Yasa E. Selective laser melting: principles and surface quality [A]. PouJ, RiveiroA, DavimJP. Additive Manufacturing [M]. Amsterdam: Elsevier, 2021: 77
[11] Lan L W, Wang W X, Cui Z Q, et al. Unique duplex microstructure and porosity effect on mechanical properties of AlCoCrFeNi2.1 eutectic high-entropy alloys processed by selective laser melting [J]. Acta Metall. Sin. (Engl. Lett.), 2023, 36: 1465
[12] Cunningham R, Nicolas A, Madsen J, et al. Analyzing the effects of powder and post-processing on porosity and properties of electron beam melted Ti-6Al-4V [J]. Mater. Res. Lett., 2017, 5(7): 516
[13] Anamu U S, Ayodele O O, Olorundaisi E, et al. Fundamental design strategies for advancing the development of high entropy alloys for thermo-mechanical application: a critical review [J]. J. Mater. Res. Technol., 2023, 27: 4833
[14] Zhao X J, Deng S, Li J F, et al. Improving mechanical properties of an additively manufactured high-entropy alloy via post thermomechanical treatment [J]. J. Alloy. Compd., 2024, 984: 173955
[15] Wang Y L, Chan K C. A super strong high entropy alloy with discontinuous precipitation and fine grains by additive manufacturing and thermomechanical treatment [J]. Mater. Sci. Eng., 2023, 876A: 145164
[16] Lee D, Agustianingrum M P, Park N, et al. Synergistic effect by Al addition in improving mechanical performance of CoCrNi medium-entropy alloy [J]. J. Alloy. Compd., 2019, 800: 372
[17] Qu M, Liu L, Cui Y, et al. Interfacial morphology evolution in directionally solidified Al-1.5%Cu alloy [J]. Trans. Nonferrous Met. Soc. China, 2015, 25(2): 405
[18] Kurian S, Mirzaeifar R. Selective laser melting of aluminum Nano-powder particles, a molecular dynamics study [J]. Addit. Manuf., 2020, 35: 101272
[19] Lee J, Park H, Son S, et al. Strong yet strain-hardenable equiatomic CoCrFeMnNi high-entropy alloys by dynamic heterostructuring [J]. J. Alloy. Compd., 2023, 965: 171469
[20] Verma V, Belcher C H, Apelian D, et al. Diffusion in high entropy alloy systems-a review [J]. Prog. Mater. Sci., 2024, 142: 101245
[21] Sathiyamoorthi P, Asghari-Rad P, Park J M, et al. Exceptional cryogenic strength-ductility synergy in Al0.3CoCrNi medium-entropy alloy through heterogeneous grain structure and Nano-scale precipitates [J]. Mater. Sci. Eng., 2019, 766A: 138372
[22] Sathiyamoorthi P, Park J M, Moon J, et al. Achieving high strength and high ductility in Al0.3CoCrNi medium-entropy alloy through multi-phase hierarchical microstructure [J]. Materialia, 2019, 8: 100442
[23] Charkhchian J, Zarei-Hanzaki A, Moshiri A, et al. Unraveling the formation of L12 Nano-precipitates within the FCC-phase in AlCoCrFeNi2.1 eutectic high entropy alloy [J]. Vacuum, 2024, 221: 112919
[24] Wu J P, Lin Y, Duan F H, et al. Unexpected creep behavior in a rejuvenated metallic glass [J]. J. Mater. Sci. Technol., 2023, 163: 140
[25] Tao K, Li F C, Liu Y H, et al. Unraveling the microstructural heterogeneity and plasticity of Zr50Cu40Al10 bulk metallic glass by nanoindentation [J]. Int. J. Plast., 2022, 154: 103305
[26] Chen L, Wang H, An X G, et al. Recovery, recrystallization and precipitation behavior in an ATF FeCrAl alloy during annealing treatment [J]. Mater. Charact., 2022, 190: 112026
[27] Tucho W M, Cuvillier P, Sjolyst-Kverneland A, et al. Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment [J]. Mater. Sci. Eng., 2017, 689A: 220
[28] Wu X L, Zhu Y T. Heterogeneous materials: a new class of materials with unprecedented mechanical properties [A]. WuX L, ZhuY T. Heterostructured Materials [M]. New York: Jenny Stanford Publishing, 2021
[29] Zhu Y T, Wu X L. Perspective on hetero-deformation induced (HDI) hardening and back stress [J]. Mater. Res. Lett., 2019, 7(10): 393
[30] Yang M X, Yan D S, Yuan F P, et al. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength [J]. Proc. Natl. Acad. Sci. USA, 2018, 115(28): 7224
[31] Pande C S, Cooper K P. Nanomechanics of Hall-Petch relationship in nanocrystalline materials [J]. Prog. Mater. Sci., 2009, 54: 689
[1] 杨景清, 董文超, 陆善平. δ-铁素体含量对高SiN奥氏体不锈钢焊缝性能的影响[J]. 材料研究学报, 2025, 39(9): 641-649.
[2] 詹杰, 陈小江, 邹之利, 苏兴东, 谢世宇, 江亮, 王金铃, 王烈林. 纳米Ag0@ACF材料的制备及其对气态碘的吸附性能[J]. 材料研究学报, 2025, 39(9): 673-682.
[3] 施渊吉, 程诚, 张海涛, 胡道春, 陈晶晶, 黎军顽. β-SiC半导体器件在滑动摩擦中材料去除行为的纳观分析[J]. 材料研究学报, 2025, 39(9): 701-711.
[4] 周影影, 张瑛嫺, 淡卓娅, 杜旭, 杜浩楠, 甄恩远, 罗发. 掺杂LaYFeO3 陶瓷吸波性能的影响[J]. 材料研究学报, 2025, 39(8): 561-568.
[5] 王铭宇, 李述军, 和正华, 唐明德, 张思倩, 张浩宇, 周舸, 陈立佳. 激光功率和扫描速度对SLM制备Ti5553合金性能的影响[J]. 材料研究学报, 2025, 39(8): 583-591.
[6] 耿瑞文, 杨志豇, 杨蔚华, 谢启明, 游津京, 李立军, 吴海华. 6H-SiC纳米磨削亚表面损伤机理的分子动力学研究[J]. 材料研究学报, 2025, 39(8): 603-611.
[7] 陆通, 王亚娜, 张超, 雷芃, 张鸿荣, 黄光伟, 郑立允. BN掺杂对热变形钕铁硼磁体性能的影响[J]. 材料研究学报, 2025, 39(8): 612-618.
[8] 张伟, 张兵, 周军, 刘跃, 王旭峰, 杨锋, 张海芹. 冷轧 Q 值对TA18管材塑性变形织构演变的影响[J]. 材料研究学报, 2025, 39(8): 619-631.
[9] 谭德新, 陈诗慧, 罗小丽, 宁小媚, 王艳丽. 富缺陷Pd纳米片的合成和对甘油的电催化氧化性能[J]. 材料研究学报, 2025, 39(8): 632-640.
[10] 张宁, 王耀奇, 杨毅, 慕延宏, 李震, 陈志勇. Ti65钛合金的超塑变形和微观组织演变[J]. 材料研究学报, 2025, 39(7): 489-498.
[11] 刘晶, 李云杰, 秦煜, 李琳琳. GCr15轴承钢中渗碳体粒径的调控对其硬度的影响[J]. 材料研究学报, 2025, 39(7): 521-532.
[12] 韩杨燚, 张腾昊, 张可, 赵时雨, 汪创伟, 余强, 李景辉, 孙新军. 终冷温度对Ti-V-Mo复合微合金钢析出相、组织和硬度的影响[J]. 材料研究学报, 2025, 39(7): 533-541.
[13] 刘志华, 王明月, 李易娟, 丘一帆, 李翔, 苏伟钊. 1T/2H O-MoS2@S-pCN催化剂的制备和性能[J]. 材料研究学报, 2025, 39(7): 551-560.
[14] 杨亮, 揣荣岩, 薛丹, 刘芳, 刘昆霖, 刘畅, 蔡桂喜. SUS301L不锈钢电阻点焊接头的微观组织和力学性能研究[J]. 材料研究学报, 2025, 39(6): 435-442.
[15] 姜爱龙, 谭炳治, 庞建超, 石锋, 张允继, 邹成路, 李守新, 伍启华, 李小武, 张哲峰. 蠕墨铸铁RuT300RuT450的低周疲劳性能和损伤机制[J]. 材料研究学报, 2025, 39(6): 443-454.