Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (1): 35-43    DOI: 10.11901/1005.3093.2024.308
  研究论文 本期目录 | 过刊浏览 |
红装TA2/Q345复合管扩散焊接头的性能
牟春浩, 陈文革(), 余田亮, 马江江
西安理工大学材料科学与工程学院 西安 710048
Interface Microstructure and Properties of TA2/Q345 Composite Pipes Prepared by Hot Assembling and Diffusion Welding
MU Chunhao, CHEN Wenge(), YU Tianliang, MA Jiangjiang
Xi'an University of Technology, School of Materials Science and Engineering, Xi'an 710048, China
引用本文:

牟春浩, 陈文革, 余田亮, 马江江. 红装TA2/Q345复合管扩散焊接头的性能[J]. 材料研究学报, 2025, 39(1): 35-43.
Chunhao MU, Wenge CHEN, Tianliang YU, Jiangjiang MA. Interface Microstructure and Properties of TA2/Q345 Composite Pipes Prepared by Hot Assembling and Diffusion Welding[J]. Chinese Journal of Materials Research, 2025, 39(1): 35-43.

全文: PDF(12041 KB)   HTML
摘要: 

采用红装和扩散焊工艺制备TA2/Q345钛钢复合管,研究了不同工艺的钛/钢复合管的界面组织和力学性能。结果表明,550 ℃红装钛钢复合管的结合强度为62.32 MPa,再经850 ℃/2 h或950 ℃/30 min扩散焊后结合强度分别提高到167.44 MPa和256.53 MPa。三种工艺的钛钢复合管中出现宽度为1.2 μm~40 μm的过渡层,其中主要是TiC、FeTi与Fe2Ti。这些物相的形成促进了界面原子键合,使界面的结合强度提高。红装剪切断口的断裂形式为穿晶韧窝的韧性断裂,扩散焊剪切断口的断裂形式为准解理脆性断裂。红外探伤结果表明,复合界面中没有显著的缺陷。

关键词 金属材料钛/钢复合管红装扩散焊显微组织    
Abstract

To address the current issues of low interfacial bonding strength and complex process flow in titanium-steel composite pipes, herein, composite pipes of TA2 Ti-alloy/Q345 steel were fabricated via hot-assembling and diffusion welding technique. The microstructure and mechanical properties of the interface of TA2/Q345 composite pipes made by different processing conditions were investigated. The results show that the bonding strength of the TA2/Q345 composite pipes is 62.32 MPa after hot assembled at 550 °C. After subsequent diffusion welding at 850 °C for 2 hours or at 950 °C for 30 minutes, the bonding strengths rise up to 167.44 MPa and 256.53 MPa, respectively. Transition layers in between TA2 and Q345 ranging from 1.2 μm to 40 μm were observed under all the three making conditions, which mainly composed of TiC, FeTi, and Fe2Ti. The formation of these phases promoted atomic bonding of the interface, enhancing bonding strength. The fracture mode of the shear fracture surface of the hot assembled composite pipe was ductile fracture with numerous transgranular dimples, while the fracture mode of the shear fracture surface of the diffusion welded composite pipe was quasi-cleavage brittle fracture. No significant defects were detected on the composite interface after infrared nondestructive test.

Key wordsmetallic materials    titanium/steel composite pipe    hot-assembled    diffusion-welded    microstructure
收稿日期: 2024-07-15     
ZTFLH:  TG376.9  
基金资助:陕西省重点研发项目(2023-YF-YBGY-1616);西安市硬科技项目(2024JH-CLYB-0034)
通讯作者: 陈文革,教授,wgchen001@263.net,研究方向为先进粉末冶金及复合材料
Corresponding author: CHEN Wenge, Tel: (029)82312383, E-mail: wgchen001@263.net
作者简介: 牟春浩,男,1998年生,硕士
图1  Q345钢管和TA2钛管的基体组织
AlloyCSiMnNHONiCrFeTi
TA20.030.04-0.010.00200.01--0.18Bal.
Q3450.160.351.34---0.2450.236Bal.-
表1  TA2和Q345原料的化学成分
图2  钛钢复合管的制备流程
图3  钛钢复合管剪切实验试样的尺寸和实验装置
图4  TA2与Q345复合管界面处的OM照片
图5  红装和扩散焊后钛钢复合管界面处的SEM照片和EDS线扫描图
123456789
Fe36.6195.7865.7599.8437.4599.4448.5652.6199.91
Ti54.823.2718.520.1252.680.0251.2327.120.08
C8.570.9515.730.049.870.540.2120.270.01
表2  红装和扩散焊后钛钢复合管界面处的EDS线扫描结果
图6  复合管钛侧和钢侧的XRD谱
图7  TiC、FeTi以及Fe2Ti不同温度的ΔG θ
图8  红装和扩散焊后TA2/Q345复合管的剪切强度和界面处硬度分布曲线
图9  TA2/Q345复合管剪切试验后钛侧和钢侧断口的形貌
图10  TA2和Q345复合管红装和扩散焊界面的红外探伤结果
1 Mohammadi A, Dobaradaran S, Schmidt T C, et al. Emerging contaminants migration from pipes used in drinking water distribution systems: a review of the scientific literature [J]. Environ. Sci. Pollut. Res., 2022, 29(50): 75134
2 Bott I S, De Souza L F G, Teixeira J C G, et al. High-strength steel development for pipelines: a Brazilian perspective [J]. Metall. Mater. Trans A., 2005, 36: 443
3 Angst U M. Challenges and opportunities in corrosion of steel in concrete [J]. Mater. Struct., 2018, 51(1): 4
4 Alcántara J, Fuente D, Chico B, et al. Marine atmospheric corrosion of carbon steel: A review [J]. Materials, 2017, 10(4): 406
5 Peacock D K, Corr M I. Effective design of high performance corrosion resistant systems for oceanic environments using titanium[J]. Corros. Rev., 2000, 18(4-5): 295
6 Sun Y B, Niu H J, Wang J Y, et al. Microstructure and Corrosion Property of Prepared CoCrW Coatings on the TC4 Surface by Laser Cladding [J]. Coatings, 2023, 13(10): 1687
7 Kuanhai D, Jialian L, Bin L, et al. Study of internal pressure strength of the titanium-steel composite tube based on yield and shear failure mechanisms [J]. Int. J. Hydrogen Energy, 2019, 44(5): 2997
8 Su H, Luo X, Chai F, et al. Manufacturing technology and application trends of titanium clad steel plates [J]. J. Iron Steel Res. Int., 2015, 22(11): 977
9 Yu C, Qi Z, Yu H, et al. Microstructural and mechanical properties of hot roll bonded titanium alloy/low carbon steel plate [J]. J. Mater. Eng. Perform., 2018, 27: 1664
10 Zeng D, Deng K, Lin Y, et al. Theoretical and experimental study of the thermal strength of anticorrosive lined steel pipes [J]. Pet. Sci., 2014, 11: 417
11 Pan X Y, Jiang J, Ren Y F, et al. Microstructure and properties of hot extruded titanium/steel composite tubes [J]. J. Mater. Res., 2023, 37(09):713
11 潘新元, 蒋 津, 任云飞 等. 热挤压钛/钢复合管的微观组织和性能 [J]. 材料研究学报, 2023, 37(09): 713
12 Cheng L, Zhang X H, Han Y, et al. Influence of interlayer materials Fe and Nb on the interface and shear strength of high-strength titanium-steel composite tubes [J]. Journal of Metals, 60(1): 117
12 程 磊, 张旭航, 韩 盈 等. 中间层材料Fe和Nb对高强钛-钢复合管界面及剪切强度的影响 [J]. 金属学报, 60(1): 117
13 Liu D Y, Miao J, Ren R M. Interfacial organisation and properties of titanium-copper-stainless steel diffusion composite tubes [J]. Journal of Materials Heat Treatment, 2013, 34(12): 125
13 刘德义, 苗 佳, 任瑞铭. 钛-铜-不锈钢扩散复合管界面组织与性能 [J]. 材料热处理学报, 2013, 34(12): 125
14 Wang S, Han X. Investigation on microstructure and mechanical properties of TA10-Q245R composite plate formed by explosive welding [J]. J. Mater. Eng. Perform., 2019, 28: 4241
15 Wang W, Tu Y, Liu M, et al. Effect of inhomogeneous plastic deformation on the interfacial microstructure and properties of titanium/stainless steel [J]. J. Mater. Res. Technol., 2023, 24: 124
16 Kundu S, Sam S, Chatterjee S. Interface microstructure and strength properties of Ti-6Al-4V and microduplex stainless steel diffusion bonded joints [J]. Mater. Des., 2011, 32(5): 2997
17 Sam S, Kundu S, Chatterjee S. Diffusion bonding of titanium alloy to micro-duplex stainless steel using a nickel alloy interlayer: Mater. Des. [J]. Mater. Des., 2012, 40: 237
18 Zhang J, Hu T. Buckling failure mechanism of liner pipe in bimetal mechanical clad pipe under complex loading [J]. Ocean Eng., 2022, 262: 112091
19 Lin Y C, Huang J, He D G, et al. Phase transformation and dynamic recrystallization behaviors in a Ti55511 titanium alloy during hot compression [J]. J. Alloy. Compd., 2019, 795: 471
doi: 10.1016/j.jallcom.2019.04.319
20 Ghosh M, Chatterjee S. Effect of interface microstructure on the bond strength of the diffusion welded joints between titanium and stainless steel [J]. Mater. Charact., 2005, 54(4-5): 327
21 Wen M, Liu G, Gu J, et al. Dislocation evolution in titanium during surface severe plastic deformation [J]. Appl. Surf. Sci., 2009, 255(12): 6097
22 Chai X, Chen G, Chai F, et al. Hot roll bonding between commercially pure titanium and high-strength low-alloy steel using Fe interlayer [J]. J. Iron Steel Res. Int., 2019, 26: 1126
23 Zhao Z, Hui P, Wang T, et al. New strategy to grow TiC coatings on titanium alloy: Contact solid carburization by cast iron [J]. J. Alloy. Compd., 2018, 745: 637
24 Yang X, Guo K, Gao Y, et al. Effect of carbon content on interfacial microstructure and mechanical properties of a vacuum hot-compressed bonding titanium-steel composite [J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2021, 824: 141802
25 Chai X, Chen G, Chai F, et al. Hot roll bonding between commercially pure titanium and high-strength low-alloy steel using Fe interlayer [J]. J. Iron Steel Res. Int., 2019, 26: 1126
26 Wang F F, Lu X G, Pan T, et al. Thermodynamic optimisation of Fe-Ti-C ternary system [J]. Shanghai Metals, 2018: 1
26 王菲菲, 鲁晓刚, 潘 涛 等. Fe-Ti-C三元系热力学优化 [J]. 上海金属, 2018: 1
27 Zhou Q, Jia B, Guo B, et al. Microstructure and mechanical properties of the bonding interface of explosively welded TA2/Q235 composite under dynamic shear loading [J]. Int. J. Mech. Sci., 2022, 225: 107362
28 Prasanthi T N, Sudha RC, Saroja S. Explosive cladding and post-weld heat treatment of mild steel and titanium [J]. Mater. Des., 2016, 93: 180
29 Guoyin Z, Xi S, Jinghua Z. Interfacial bonding mechanism and mechanical performance of Ti/steel bimetallic clad sheet produced by explosive welding and annealing [J]. Rare Metal Mat. Eng., 2017, 46(4): 906
30 Dong W C, Li F Y, Ren P X. Interfacial characteristics of cumulative stacked welded TA1/Q235 steel composite plates [J]. J. Eng. Sci. Technol., 2008, 30(3): 249
30 董成文, 李艳芳, 任学平. TA1/Q235钢复合板累积叠轧焊界面特性 [J]. 工程科学学报, 2008, 30(3): 249
31 Zhao Z, Tang J, Liu H, et al. Effect of rolling temperature on microstructure and mechanical properties of Ti/steel clad plates fabricated by cold spraying and hot-rolling [J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2020, 795: 139982
32 Lei X, Ding W, Lu X, et al. Interfacial modification of titanium/steel composites and its effect on the growth pattern of Fe-Ti compounds [J]. Mater. Today Commun., 2024: 109289
33 Jiang B, Huang K, Cao Z, et al. Thermodynamic study of titanium oxycarbide [J]. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 2012, 43: 3510
34 Yang D, Luo Z, Xie G, et al. Effect of vacuum level on microstructure and mechanical properties of titanium-steel vacuum roll clad plates [J]. J. Iron Steel Res. Int., 2018, 25: 72
35 Geng F, Wang Y F. Fundamentals of Materials Engineering [M]. Nanjing: Nanjing University Press, 2021
35 耿 飞, 王玉丰. 材料工程基础 [M]. 南京: 南京大学出版社, 2021
36 Dimitrienko Y I. Thermomechanics of Composites under High Temperatures [M]. Springer Science & Business Media, 2013
37 Meschut G, Merklein M, Brosius A, et al. Review on mechanical joining by plastic deformation [J]. J. Adv. Join. Process., 2022, 5: 100113
38 Lesuer D R, Syn C K, Sherby O D, et al. Mechanical behaviour of laminated metal composites [J]. Int. Mater. Rev., 1996, 41(5): 169
39 Rajabi A, Ghazali M J, Daud A R. Chemical composition, microstructure and sintering temperature modifications on mechanical properties of TiC-based cermet-A review [J]. Mater. Des., 2015, 67: 95
40 Lei X, Ding W, Hu Y, et al. Structural modification of TA2/Q355B composite interface and study of TiC stability mechanism [J]. Mater. Sci. Technol., 2023, 39(15): 1939
41 Yu C, Fu L, Xiao H, et al. Effect of carbon content on the microstructure and bonding properties of hot-rolling pure titanium clad carbon steel plates [J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2021, 820: 141572
[1] 胥聪敏, 李雪丽, 付安庆, 孙姝雯, 陈志强, 李城臣. 复配杀菌缓蚀剂对N80钢在SRB环境中微生物腐蚀行为的影响[J]. 材料研究学报, 2025, 39(2): 145-152.
[2] 吴晓祺, 万红江, 明洪亮, 王俭秋, 柯伟, 韩恩厚. 原位小冲头压缩速率对X65管线钢氢脆敏感性的影响[J]. 材料研究学报, 2025, 39(2): 92-102.
[3] 马修戈, 吴庆辉, 庞建超, 刘增乾, 李守新, 骆凯伦, 张哲峰. 晶界取向差对双晶高温合金常温和高温拉伸性能的影响[J]. 材料研究学报, 2025, 39(2): 81-91.
[4] 袁鸿渊, 张思倩, 王栋, 张英建, 马力, 于明涵, 张浩宇, 周舸, 陈立佳. 长时热暴露对一种热障涂层/DZ411镍基高温合金体系界面组织演变的影响[J]. 材料研究学报, 2025, 39(2): 113-125.
[5] 徐展源, 赵伟, 史湘石, 张振宇, 王中钢, 韩勇, 范景莲. 成分调节对软磁MnZn铁氧体结构和磁性的影响[J]. 材料研究学报, 2025, 39(1): 55-62.
[6] 邓小龙, 王山山, 戴鑫鑫, 刘义, 黄金昭. 非晶态FeOOH修饰的CoFeAl层状双氢氧化物异质结构的制备和对碱性溶液的全解水性能[J]. 材料研究学报, 2025, 39(1): 71-80.
[7] 王娜, 李文彬, 庞建超, 陈立佳, 高崇, 邹成路, 张辉, 李守新, 张哲峰. 增材制造高温合金在不同温度下的拉伸性能与变形机制[J]. 材料研究学报, 2025, 39(1): 1-10.
[8] 李培跃, 张明辉, 孙文韬, 鲍志豪, 高琦, 王延枝, 牛龙. CeLaAl-Zn合金微观组织和力学性能的影响[J]. 材料研究学报, 2024, 38(9): 651-658.
[9] 尹一峰, 卢正冠, 徐磊, 吴杰. GH4099合金粉末的热等静压成形和薄壁筒体的制造[J]. 材料研究学报, 2024, 38(9): 669-679.
[10] 汪小锋, 谭蔚, 冯光明, 刘吉波, 刘先斌, 鲁涵. Al-Mg-Si合金中的富铁相对其力学性能的影响[J]. 材料研究学报, 2024, 38(9): 701-710.
[11] 邵霞, 鲍梦凡, 陈诗洁, 林娜, 檀杰, 冒爱琴. 尖晶石型无钴(Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 高熵氧化物的制备及其储锂性能[J]. 材料研究学报, 2024, 38(9): 680-690.
[12] 岑耀东, 计春娇, 包喜荣, 王晓东, 陈林, 董瑞. 珠光体重轨钢疲劳裂纹尖端的应力应变场[J]. 材料研究学报, 2024, 38(9): 711-720.
[13] 刘庆澳, 张伟红, 王志远, 孙文儒. K4169合金的高温低周疲劳行为[J]. 材料研究学报, 2024, 38(8): 621-631.
[14] 刘硕, 张鹏, 王斌, 汪开忠, 许自宽, 胡芳忠, 段启强, 张哲峰. 高速列车车轴DZ2钢的强韧性关系和低温脆性[J]. 材料研究学报, 2024, 38(8): 561-568.
[15] 娄伟冬, 赵海东, 王果. 在铝液中热循环H13钢的软化行为[J]. 材料研究学报, 2024, 38(8): 593-604.