材料研究学报, 2025, 39(1): 35-43 DOI: 10.11901/1005.3093.2024.308

研究论文

红装TA2/Q345复合管扩散焊接头的性能

牟春浩, 陈文革,, 余田亮, 马江江

西安理工大学材料科学与工程学院 西安 710048

Interface Microstructure and Properties of TA2/Q345 Composite Pipes Prepared by Hot Assembling and Diffusion Welding

MU Chunhao, CHEN Wenge,, YU Tianliang, MA Jiangjiang

Xi'an University of Technology, School of Materials Science and Engineering, Xi'an 710048, China

通讯作者: 陈文革,教授,wgchen001@263.net,研究方向为先进粉末冶金及复合材料

责任编辑: 黄青

收稿日期: 2024-07-15   修回日期: 2024-10-25  

基金资助: 陕西省重点研发项目(2023-YF-YBGY-1616)
西安市硬科技项目(2024JH-CLYB-0034)

Corresponding authors: CHEN Wenge, Tel:(029)82312383, E-mail:wgchen001@263.net

Received: 2024-07-15   Revised: 2024-10-25  

Fund supported: Shaanxi Provincial Key R & D Project(2023-YF-YBGY-1616)
Xi'an Hard Science and Technology Project(2024JH-CLYB-0034)

作者简介 About authors

牟春浩,男,1998年生,硕士

摘要

采用红装和扩散焊工艺制备TA2/Q345钛钢复合管,研究了不同工艺的钛/钢复合管的界面组织和力学性能。结果表明,550 ℃红装钛钢复合管的结合强度为62.32 MPa,再经850 ℃/2 h或950 ℃/30 min扩散焊后结合强度分别提高到167.44 MPa和256.53 MPa。三种工艺的钛钢复合管中出现宽度为1.2 μm~40 μm的过渡层,其中主要是TiC、FeTi与Fe2Ti。这些物相的形成促进了界面原子键合,使界面的结合强度提高。红装剪切断口的断裂形式为穿晶韧窝的韧性断裂,扩散焊剪切断口的断裂形式为准解理脆性断裂。红外探伤结果表明,复合界面中没有显著的缺陷。

关键词: 金属材料; 钛/钢复合管; 红装; 扩散焊; 显微组织

Abstract

To address the current issues of low interfacial bonding strength and complex process flow in titanium-steel composite pipes, herein, composite pipes of TA2 Ti-alloy/Q345 steel were fabricated via hot-assembling and diffusion welding technique. The microstructure and mechanical properties of the interface of TA2/Q345 composite pipes made by different processing conditions were investigated. The results show that the bonding strength of the TA2/Q345 composite pipes is 62.32 MPa after hot assembled at 550 °C. After subsequent diffusion welding at 850 °C for 2 hours or at 950 °C for 30 minutes, the bonding strengths rise up to 167.44 MPa and 256.53 MPa, respectively. Transition layers in between TA2 and Q345 ranging from 1.2 μm to 40 μm were observed under all the three making conditions, which mainly composed of TiC, FeTi, and Fe2Ti. The formation of these phases promoted atomic bonding of the interface, enhancing bonding strength. The fracture mode of the shear fracture surface of the hot assembled composite pipe was ductile fracture with numerous transgranular dimples, while the fracture mode of the shear fracture surface of the diffusion welded composite pipe was quasi-cleavage brittle fracture. No significant defects were detected on the composite interface after infrared nondestructive test.

Keywords: metallic materials; titanium/steel composite pipe; hot-assembled; diffusion-welded; microstructure

PDF (12041KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

牟春浩, 陈文革, 余田亮, 马江江. 红装TA2/Q345复合管扩散焊接头的性能[J]. 材料研究学报, 2025, 39(1): 35-43 DOI:10.11901/1005.3093.2024.308

MU Chunhao, CHEN Wenge, YU Tianliang, MA Jiangjiang. Interface Microstructure and Properties of TA2/Q345 Composite Pipes Prepared by Hot Assembling and Diffusion Welding[J]. Chinese Journal of Materials Research, 2025, 39(1): 35-43 DOI:10.11901/1005.3093.2024.308

钢管因强度高、塑韧性,在石油化工、食品饮料以及生化制药等领域得到了广泛的应用[1,2]。但是,钢管的抗腐蚀性能不高[3,4]。钛管的耐腐蚀和比强度高,在海洋运输、航空航天和核工业等领域有广阔的应用前景[5,6]。但是,钛管的价格昂贵[7,8]。以钢管为基管、外包或内衬钛管的钛钢复合管,兼具高力学性能和耐蚀性能[9]

用液压膨胀法制备的双金属复合管,其界面结合强度为4~6.5 MPa。理论计算和剪切实验结果表明,在液压成型过程中复合管的结合强度取决于基管和衬管的塑性变形[10]。分别将基管和衬管在220 ℃低温退火后经1000 ℃热挤压制备TA2/Q235复合管,低温处理可降低复合界面的硬度并提高界面结合强度[11]。分别用Fe和Nb为中间层用热挤压工艺制备的TC11/Fe/CrMo与170 MPa TC11/Nb/CrMo复合管剪切强度为185 MPa,其界面结合强度决定于界面晶粒的不均匀变形和中间相的脆性[12]。用Cu为中间层用拉拔+热扩散法制备的TA2/Cu/20钛钢复合管,其界面结合强度高达310 MPa[13]。将复合板轧制、卷管和焊接,也能制备钛钢复合管。将TA10/Q235R复合板爆炸焊接,再将其在550 ℃退火1.5 h,得到的复合板的抗拉强度可达463.27 MPa[14]。分别将TA2/SUS304复合板平轧制(FR)和辊轧+平轧(CFR + FR),用CFR + FR制备的复合板非均匀塑性变形后界面呈波浪形,其剪切强度从FR的140 MPa提高到245 MPa[15]。在900 ℃扩散焊制备的Ti-6Al-4V钛合金和微双相不锈钢复合板,其剪切强度高达400 MPa[16];在钛/钢之间加Ni过渡层,使界面组织由Fe-Ti系化合物转变为脆性较小的Ni-Ti系化合物,可将界面剪切强度提高到460 MPa[17]。这些结果表明,当前钛钢复合管的研究主要集中在制备技术创新和界面结合特性的研究。用机械法制备的双金属复合管其界面结合强度只取决于衬管与基管的塑性变形,结合强度低于10 MPa且易发生衬管塌陷[18],而用冶金法制备的双金属复合管,其结合强度不同且工艺复杂。本文利用金属热胀冷缩原理(即红装工艺)制备钛/钢复合管并对其进行扩散焊,研究扩散焊接头的力学性能并揭示其机理。

1 实验方法

实验用TA2工业纯钛焊管的直径为25 mm、厚度为1.5 mm,Q345无缝钢管的直径为34 mm、厚度为4.5 mm,其显微组织在图1中给出,TA2的基体是α-Ti,Q345钢的基体是多边形铁素体+珠光体。实验用原材料的化学成分列于表1

图1

图1   Q345钢管和TA2钛管的基体组织

Fig.1   Matrix microstructure of Q345 steel pipe (a) and TA2 titanium pipe (b)


表1   TA2和Q345原料的化学成分

Table 1  Chemical composition of TA2 and Q345 raw materials (mass fraction, %)

AlloyCSiMnNHONiCrFeTi
TA20.030.04-0.010.00200.01--0.18Bal.
Q3450.160.351.34---0.2450.236Bal.-

新窗口打开| 下载CSV


图2给出了钛钢复合管的制备流程。先清理Q345钢管内表面和TA2钛管外表面清除油污和氧化皮等附着物,然后将钢管置于温度为500~550 ℃的KSL1700X箱式电炉中并通入氩气(流速为30~40 mL/min),保温时间15~20 min后迅速取出并立刻将TA2钛管嵌套进去,风冷至室温后得到红装TA2/Q345复合管。将红装TA2/Q345复合管置于GSL1700X管式炉中并通入氩气(流速为30~40 mL/min),分别以850 ℃/2 h和950 ℃/30 min的工艺对其进行扩散焊接。

图2

图2   钛钢复合管的制备流程

Fig.2   Preparation process of titanium steel composite pipe


使用FLIR-X6520sc红外热像仪对钛钢结合界面探伤。分别用质量分数为4%的硝酸酒精溶液和Kroll试剂(100 mL H2O + 6 mL HF + 0.8 mL HNO3)腐蚀复合管的钢侧和钛侧,用OLYMPUS-GX71型光学显微镜(OM)观察界面处钢侧和钛侧的显微组织。用JSM-6700F扫描电子显微镜(SEM)及其配套的能谱仪(EDS)观察红装与扩散焊后钛钢的复合界面和剪切断口形貌。用HV-120型显微维氏硬度计测试以钛钢复合界面为中心两侧的硬度分布,每次取点坐标距离为5 μm,钛、钢每侧各取10个点,载荷20 g,作用时间10 s。按照GB/T 37606-2019标准,用HT-2402型材料试验机测试红装和扩散焊后钛/钢复合管的室温剪切强度,在复合管两端及中段取样。试样的尺寸和实验装置在图3中给出。试样的剪切强度为

τ=P2πrh

图3

图3   钛钢复合管剪切实验试样的尺寸和实验装置

Fig.3   Shear experiment of titanium steel composite pipes (a) specimen size; (b) experimental setup


式中τ为剪切强度(MPa),P为压力(N),h为试样高度(mm),r为钛管外径(mm)。

用XRD-7000型X射线衍射仪分别测定剪切试验后TA2/Q345复合管撕裂面钛侧与钢侧的XRD谱,靶材为Cu靶,加速电压60 kV,电流50 mA,扫描速度3°/min,步长0.04º,扫描角度范围为20°~90°。

2 结果和讨论

2.1 红装和扩散焊后钛钢复合管界面的显微组织

图4给出了红装和扩散焊后钛钢复合管界面的OM照片。由图4可见,Ti衬管与钢基管之间有明显的结合界面,界面两侧的组织与未处理前(图1)相比变化不大。图4a给出了红装TA2与Q345钢界面的金相组织,可见有一个宽度为20~25 μm的过渡层,钢侧靠近结合界面有一个宽度约25 μm的光亮区,可能是红装时钢表面的碳原子扩散到钛侧。钛是强碳化物生成元素,在500 ℃红装温度即能与碳反应生成TiC。同时,在如此高的温度和短时间内钢内的碳原子来不及扩散到表面而在钢侧形成光亮区[15]图4b给出了在850 ℃扩散2 h后复合管的结合界面。可以看出,在钢侧的组织中晶粒明显长大,过渡层的宽度比图4a中过渡层的宽度明显减小且光亮区消失。其原因是,在高温下钢组织消耗了界面处的位错能使界面能降低[19,20],继而降低了C向Ti侧扩散的驱动力[21]。同时,铁素体中的C原子在850 ℃的扩散系数是α-Ti的33倍[22],因此钢基体内的C原子扩散到表面使光亮区消失。图4c给出了950 ℃/30 min扩散焊连接钛钢复合管的界面组织。与红装时相比,其过渡层的宽度增加到40 μm,光亮区的宽度增大到80 μm。其原因是,Ti和Fe原子在950 ℃的扩散系数提高,促进了二者间的互扩散;同时,在950 ℃,α-Ti到β-Ti的转变降低了C原子在Ti中的溶解度,使其更易于在钛钢界面富集而生成TiC [23]。在950 ℃,TiC的标准生产吉布斯自由能(ΔGθ)(-175 kJ/mol)小于Fe3C的ΔGθ (-5 kJ/mol) [24,25],即在此温度下TiC更易生成。光亮区变宽的原因是,在较短的时间内钢内部的碳原子尚未扩散到表面。

图4

图4   TA2与Q345复合管界面处的OM照片

Fig.4   Microstructure of interface between TA2 and Q345 composite pipes

(a) hot-assembled; (b) 850 oC/2 h diffusion-welded; (c) 950 oC/30 min diffusion-welded


图5给出了红装和扩散焊后钛钢复合管界面处的SEM照片和EDS线扫描图,表2列出了线扫描结果。由图5a可见,在钛钢界面处形成了30 μm宽的过渡区,灰色颗粒是TiC,黑色大颗粒是Fe-Ti系化合物,靠近钢侧的灰色长条状结构是钢侧基体组织,与文献[26]中的Fe-Ti-C三元相图的结果相同,点4为对应图3光亮区的点扫描结果,在该区域C元素的含量比基体明显降低,表明发生了脱碳。图5d中的线扫结果表明,钛钢各元素间的扩散使过渡层的宽度与金相组织基本相同。产生上述现象的原因是,在红装过程中钛与钢的界面因热挤压而产生塑性变形,使界面处的组织缠结形成过渡层[27];塑性变形引起的位错密度提高和红装的高温虽然在一定程度上促进了各原子间的扩散[28,29],但是扩散温度较低且时间较短使过渡层只是在近钛侧和钢侧形成冶金结合区,其余部分仍为机械结合,近钢侧基体因C原子向过渡层扩散而形成脱碳区。在850 ℃/2 h条件下的扩散焊产生的过渡层呈平直状(图5b)。图5e中的线扫描结果表明,过渡层的厚度约为1 μm。过渡层的点扫描结果(点5)表明,在此温度界面处可能存在TiC和Fe-Ti系化合物。界面处钢侧的点扫描结果(点6)表明,脱碳明显减弱。其原因是,在高温下界面处位错密度的降低减小了C向Ti侧扩散的驱动力,塑性变形生成的灰色大块物质因界面能的降低而消失[30]。适当的温度和扩散时间使钛钢结合面处的珠光体和中间相的组织细化[23]图5c给出的界面形貌与图5f中的线扫描结果表明,在950 ℃/30 min条件下扩散焊连接的TA2/Q345过渡层加宽。结合点扫描结果(点7、点8)推断,在过渡层近钛侧的组织为Fe-Ti系化合物,在近钢侧形成了TiC层。与红装相比,点9表明在此温度下界面脱碳加剧。其原因是,Ti在950 ℃的扩散系数比Fe的高,使钢侧Ti原子的扩散更深,将碳原子困在钢中生成了比Fe-Ti系化合物更厚的TiC层[31]

图5

图5   红装和扩散焊后钛钢复合管界面处的SEM照片和EDS线扫描图

Fig.5   SEM and EDS line scan at the interface of titanium-steel composite pipes after hot-assembled and diffusion-welded (a) hot-assembled; (b) 850 oC/2 h diffusion-welded; (c) 950 oC/30 min diffusion-welded; (d~f) are the EDS line scan curves labelled with the green line segments in Fig.a~c


表2   红装和扩散焊后钛钢复合管界面处的EDS线扫描结果

Table 2  EDS line scan results at the interface of the hot-assembled and diffusion-welded titanium-steel composite pipes (atomic fraction, %)

123456789
Fe36.6195.7865.7599.8437.4599.4448.5652.6199.91
Ti54.823.2718.520.1252.680.0251.2327.120.08
C8.570.9515.730.049.870.540.2120.270.01

新窗口打开| 下载CSV


图6给出了钛钢复合界面处的XRD谱。可以看出,钢侧和钛侧都有α-Fe、α-Ti、TiC以及Fe-Ti系中间相,表明在钛钢的复合过程中出现了互扩散与反应扩散。红装后在钢侧出现了α-Fe、α-Ti、TiC,在钛侧出现了α-Ti、TiC、FeTi与Fe2Ti。其原因是,红装的高温和塑性变形促进了钛与钢原子间的互扩散而生成了FeTi与Fe2Ti,C原子更大的扩散驱动力使其能扩散到钛侧与Ti原子反应生成TiC。在850 ℃扩散焊时,钢侧和Ti侧的组织与红装时相同,谱中钛侧的FeTi和Fe2Ti的衍射峰强度提高。这表明,在此温度下α-Fe的扩散系数提高,穿过TiC层在Ti侧生成了FeTi和Fe2Ti。与红装和850 ℃扩散焊相比,在950 ℃扩散焊后谱中除了上述产物的高强度峰,还出现了钛侧的β-Ti峰。其原因是,温度高于882 ℃时钛从α-Ti转变到同素异构β-Ti,因为扩散时间较短没有出现在钢侧。

图6

图6   复合管钛侧和钢侧的XRD谱

Fig.6   XRD of titanium and steel sides of composite pipes

(a) steel side; (b) Titanium side


XRD谱中钢侧α-Ti的峰强度变化的排序为:850 ℃扩散焊<红装<950 ℃扩散焊,而TiC峰强度变化的排序则为:红装<850 ℃<扩散焊950 ℃扩散焊。红装时的塑性变形和热扩散促进了α-Ti原子向钢侧扩散,而红装的较低温度使扩散到钢侧界面处的Ti多以α-Ti的形式存在,TiC的数量较少[28];在850 ℃扩散焊使C原子的扩散激活能升高,从而促进了界面上TiC的形核和长大。因此,在此温度下TiC峰的强度升高,而α-Ti的消耗使其峰强度略微降低;但是,温度继续提高到950 ℃使C元素大量消耗并难以补充,以致没有足够的C原子与扩散过来的Ti反应[32],这部分钛就以α-Ti的形式聚集在界面。在各温度钛侧TiC的峰强度都比FeTi和Fe2Ti的高,因为C、Fe原子在与Ti的反应扩散过程中存在竞争机制[33]。在不同温度下Fe3C、TiC、FeTi与Fe2Ti的ΔGθ 曲线如图7所示[34],可见三种中间相ΔGθ 大小的排序为TiC < Fe2Ti < FeTi < 0。于是,在反应扩散过程中TiC优先在界面生成,而C、Fe原子在与Ti生成化合物的过程中存在竞争。因此,这部分优先生成的TiC成为Ti原子和Fe原子反应扩散的屏障,阻碍了FeTi和Fe2Ti的生成。

图7

图7   TiC、FeTi以及Fe2Ti不同温度的ΔG θ

Fig.7   ΔG θ of TiC, FeTi, and Fe2Ti at different temperatures


2.2 TA2/Q345复合管的力学性能

图8给出了TA2/Q345复合管的力学性能。由图8a可见,红装后TA2/Q345复合管的剪切强度为62.32 MPa,远高于传统机械复合管的剪切强度(4~6.5 MPa)[10]。其原因是,红装时热应力为[35]

σ=EαT

式中Δσ为材料的热应力,E为材料的弹性模量,α为线膨胀系数,ΔT为加热温度,E为(1.96~2.06) × 105 MPa,α为8.6 × 10-6/ ℃[36]。显然,在500 ℃红装过程中钛管和钢管在热胀冷缩过程中产生的高于1200 MPa的挤压力远超TA2工业纯钛的屈服强度(550 MPa[35]),从而使其表面发生显著的塑性变形而使两种异质金属由点、线接触变成面、线接触,局部甚至出现焊合,实现了钛与钢间的机械嵌合[37];同时,在红装后的冷却过程中Ti、Fe、C等原子的扩散在界面生成了一定量的TiC、FeTi与Fe2Ti中间相,加强了界面的原子键合[38]。机械键合和原子键合使红装钛钢复合管的剪切强度远超传统机械复合管。在850 ℃/2 h和950 ℃/30 min条件下扩散焊后,复合管的结合强度分别提高到167.44 MPa和265.53 MPa。由图8可见,与红装相比,更高温度的扩散焊使界面TiC相的数量更多,因而使扩散焊后复合界面的结合强度更高[33]。与在850 ℃/2 h条件下的扩散焊相比,在950 ℃/30 min条件下的扩散焊在复合界面生成的TiC层更厚,大量的FeTi和Fe2Ti降低了钛钢界面的结合强度,而竞争机制使更厚的TiC层降低了FeTi和Fe2Ti的数量,从而提高了界面结合强度[33,39,40]

图8

图8   红装和扩散焊后TA2/Q345复合管的剪切强度和界面处硬度分布曲线

Fig.8   Shear strength (a) and hardness distribution curve (b) at the interface of TA2/Q345 composite pipes after hot-assembled and diffusion-welded


图8b给出了红装和扩散焊后TA2/Q345复合管界面的显微硬度曲线,可见过渡区的硬度高于基材,因为与红装相比钛与钢的反应热使扩散在过渡区生成了更多的TiC、FeTi和Fe2Ti等本征脆性相[15,16]。红装、850 ℃扩散焊和950 ℃扩散焊后,TA2/Q345复合管过渡区的硬度最大硬度值分别为360HV、442HV和585HV。钢侧的硬度比基材的低,是钢中的碳向界面扩散所致。由图5可见,与950 ℃扩散焊相比红装的界面脱碳加剧,使其硬度显著降低。红装和850 ℃扩散焊后近过渡层钛侧的硬度与基体的硬度基本相同,而在950 ℃扩散焊后此处的硬度有所下降,是α-Ti向同素异构β-Ti转变所致[11,13,17]

图9给出了TA2/Q345复合管剪切断裂后钛侧和钢侧断口的形貌。从图9a~f中的低倍照片可见,在两侧断口的表面出现由中间相组成的岛状结构。由图9a'~f'中的高倍断口照片可见,钛钢复合管的断口发生在界面近钢侧并出现了大量穿晶韧窝(图9a'),为典型的韧性断裂;图9b'c'中的断口为准解理断口(图7b),出现脆性断裂倾向 [41]

图9

图9   TA2/Q345复合管剪切试验后钛侧和钢侧断口的形貌

Fig.9   Fracture morphology of the titanium side and steel side of the TA2/Q345 composite pipes after shear test (a~f) are images at low magnification; (a'~f') are the high magnification images of the boxed area (a~f)


图10给出了TA2与Q345复合管结合界面的红外探伤成像图,图10a~c分别给出了红装和850 ℃/2 h、950 ℃/30 min扩散焊后界面的探伤结果。可以看出,在钛钢界面温度没有明显的变化也没有出现明显的缺陷,表明两者结合良好。从图10a可见,内侧的钛比外侧的钢温度稍高,表明红装时可能存在细微的间隙,而扩散焊后看不到温度的变化,表明结合更加理想(图10c)。为了证明探伤的可信度,图10d给出了直接冷挤压钢钛复合管的探伤结果,在结合界面可清晰地观察到缺陷层。

图10

图10   TA2和Q345复合管红装和扩散焊界面的红外探伤结果

Fig.10   Infrared nondestructive test at the interface between TA2 and Q345 composite pipes

(a) hot-assembled; (b) 850 oC/2 h diffusion-welded; (c) 950 oC/30 min diffusion-welded; (d) comparison specimen


3 结论

(1) 将钢管加热到500~550 ℃膨胀后与钛管复合后快冷,可制备出有一过渡层的TA2/Q345复合管。复合管的结合强度为62.32 MPa,过镀层的硬度比基体的硬度高50%。在850 ℃/2 h或950 ℃/30 min条件下扩散焊后结合界面的过渡层变薄后又增厚。结合界面没有显著的缺陷。

(2) 在红装界面生成了TiC,在扩散焊界面生成了TiC、FeTi和Fe2Ti,界面的断口形式为典型的脆性断裂。红装时少量的TiC能促进界面原子的键合,使界面结合强度提高;在高温TiC能在一定程度上抑制FeTi和Fe2Ti的生成。

(3) 红装剪切断口的断裂形式为穿晶韧窝的韧性断裂,扩散焊剪切断口的断裂形式为准解理脆性断裂。

参考文献

Mohammadi A, Dobaradaran S, Schmidt T C, et al.

Emerging contaminants migration from pipes used in drinking water distribution systems: a review of the scientific literature

[J]. Environ. Sci. Pollut. Res., 2022, 29(50): 75134

[本文引用: 1]

Bott I S, De Souza L F G, Teixeira J C G, et al.

High-strength steel development for pipelines: a Brazilian perspective

[J]. Metall. Mater. Trans A., 2005, 36: 443

[本文引用: 1]

Angst U M.

Challenges and opportunities in corrosion of steel in concrete

[J]. Mater. Struct., 2018, 51(1): 4

[本文引用: 1]

Alcántara J, Fuente D, Chico B, et al.

Marine atmospheric corrosion of carbon steel: A review

[J]. Materials, 2017, 10(4): 406

[本文引用: 1]

Peacock D K, Corr M I.

Effective design of high performance corrosion resistant systems for oceanic environments using titanium

[J]. Corros. Rev., 2000, 18(4-5): 295

[本文引用: 1]

Sun Y B, Niu H J, Wang J Y, et al.

Microstructure and Corrosion Property of Prepared CoCrW Coatings on the TC4 Surface by Laser Cladding

[J]. Coatings, 2023, 13(10): 1687

[本文引用: 1]

Kuanhai D, Jialian L, Bin L, et al.

Study of internal pressure strength of the titanium-steel composite tube based on yield and shear failure mechanisms

[J]. Int. J. Hydrogen Energy, 2019, 44(5): 2997

[本文引用: 1]

Su H, Luo X, Chai F, et al.

Manufacturing technology and application trends of titanium clad steel plates

[J]. J. Iron Steel Res. Int., 2015, 22(11): 977

[本文引用: 1]

Yu C, Qi Z, Yu H, et al.

Microstructural and mechanical properties of hot roll bonded titanium alloy/low carbon steel plate

[J]. J. Mater. Eng. Perform., 2018, 27: 1664

[本文引用: 1]

Zeng D, Deng K, Lin Y, et al.

Theoretical and experimental study of the thermal strength of anticorrosive lined steel pipes

[J]. Pet. Sci., 2014, 11: 417

[本文引用: 2]

Pan X Y, Jiang J, Ren Y F, et al.

Microstructure and properties of hot extruded titanium/steel composite tubes

[J]. J. Mater. Res., 2023, 37(09):713

[本文引用: 2]

潘新元, 蒋 津, 任云飞 .

热挤压钛/钢复合管的微观组织和性能

[J]. 材料研究学报, 2023, 37(09): 713

[本文引用: 2]

Cheng L, Zhang X H, Han Y, et al.

Influence of interlayer materials Fe and Nb on the interface and shear strength of high-strength titanium-steel composite tubes

[J]. Journal of Metals, 60(1): 117

[本文引用: 1]

程 磊, 张旭航, 韩 盈 .

中间层材料Fe和Nb对高强钛-钢复合管界面及剪切强度的影响

[J]. 金属学报, 60(1): 117

[本文引用: 1]

Liu D Y, Miao J, Ren R M.

Interfacial organisation and properties of titanium-copper-stainless steel diffusion composite tubes

[J]. Journal of Materials Heat Treatment, 2013, 34(12): 125

[本文引用: 2]

刘德义, 苗 佳, 任瑞铭.

钛-铜-不锈钢扩散复合管界面组织与性能

[J]. 材料热处理学报, 2013, 34(12): 125

[本文引用: 2]

Wang S, Han X.

Investigation on microstructure and mechanical properties of TA10-Q245R composite plate formed by explosive welding

[J]. J. Mater. Eng. Perform., 2019, 28: 4241

[本文引用: 1]

Wang W, Tu Y, Liu M, et al.

Effect of inhomogeneous plastic deformation on the interfacial microstructure and properties of titanium/stainless steel

[J]. J. Mater. Res. Technol., 2023, 24: 124

[本文引用: 3]

Kundu S, Sam S, Chatterjee S.

Interface microstructure and strength properties of Ti-6Al-4V and microduplex stainless steel diffusion bonded joints

[J]. Mater. Des., 2011, 32(5): 2997

[本文引用: 2]

Sam S, Kundu S, Chatterjee S.

Diffusion bonding of titanium alloy to micro-duplex stainless steel using a nickel alloy interlayer: Mater. Des.

[J]. Mater. Des., 2012, 40: 237

[本文引用: 2]

Zhang J, Hu T.

Buckling failure mechanism of liner pipe in bimetal mechanical clad pipe under complex loading

[J]. Ocean Eng., 2022, 262: 112091

[本文引用: 1]

Lin Y C, Huang J, He D G, et al.

Phase transformation and dynamic recrystallization behaviors in a Ti55511 titanium alloy during hot compression

[J]. J. Alloy. Compd., 2019, 795: 471

DOI      [本文引用: 1]

Hot compression experiments of a Ti55511 titanium alloy are conducted to study the phase transformation characteristics and dynamic recrystallization (DRX) behavior. It is found that the fraction of alpha phase decreases with increasing the strain rate or deformation amount. Meanwhile, the original lamellar alpha phases easily transform into the spheroidal and bulk a phases at larger deformation amounts or higher strain rates. Most of alpha phases disappear and the final microstructures are mainly beta phases when the temperature is over 800 degrees C. The DRX degree rises with raising the deformation amount or decreasing the strain rate. However, the DRX behavior becomes weaken with raising the deformation temperature. alpha phases are evenly distributed around beta phases during hot compressive deformation, which not only restrains the growth of beta phases but also promotes the DRX process of beta phases. In addition, the geometric DRX takes place within alpha phases, while the continuous DRX occurs within beta phases during the hot compression. (C) 2019 Elsevier B.V.

Ghosh M, Chatterjee S.

Effect of interface microstructure on the bond strength of the diffusion welded joints between titanium and stainless steel

[J]. Mater. Charact., 2005, 54(4-5): 327

[本文引用: 1]

Wen M, Liu G, Gu J, et al.

Dislocation evolution in titanium during surface severe plastic deformation

[J]. Appl. Surf. Sci., 2009, 255(12): 6097

[本文引用: 1]

Chai X, Chen G, Chai F, et al.

Hot roll bonding between commercially pure titanium and high-strength low-alloy steel using Fe interlayer

[J]. J. Iron Steel Res. Int., 2019, 26: 1126

[本文引用: 1]

Zhao Z, Hui P, Wang T, et al.

New strategy to grow TiC coatings on titanium alloy: Contact solid carburization by cast iron

[J]. J. Alloy. Compd., 2018, 745: 637

[本文引用: 2]

Yang X, Guo K, Gao Y, et al.

Effect of carbon content on interfacial microstructure and mechanical properties of a vacuum hot-compressed bonding titanium-steel composite

[J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2021, 824: 141802

[本文引用: 1]

Chai X, Chen G, Chai F, et al.

Hot roll bonding between commercially pure titanium and high-strength low-alloy steel using Fe interlayer

[J]. J. Iron Steel Res. Int., 2019, 26: 1126

[本文引用: 1]

Wang F F, Lu X G, Pan T, et al.

Thermodynamic optimisation of Fe-Ti-C ternary system

[J]. Shanghai Metals, 2018: 1

[本文引用: 1]

王菲菲, 鲁晓刚, 潘 涛 .

Fe-Ti-C三元系热力学优化

[J]. 上海金属, 2018: 1

[本文引用: 1]

Zhou Q, Jia B, Guo B, et al.

Microstructure and mechanical properties of the bonding interface of explosively welded TA2/Q235 composite under dynamic shear loading

[J]. Int. J. Mech. Sci., 2022, 225: 107362

[本文引用: 1]

Prasanthi T N, Sudha RC, Saroja S.

Explosive cladding and post-weld heat treatment of mild steel and titanium

[J]. Mater. Des., 2016, 93: 180

[本文引用: 2]

Guoyin Z, Xi S, Jinghua Z.

Interfacial bonding mechanism and mechanical performance of Ti/steel bimetallic clad sheet produced by explosive welding and annealing

[J]. Rare Metal Mat. Eng., 2017, 46(4): 906

[本文引用: 1]

Dong W C, Li F Y, Ren P X.

Interfacial characteristics of cumulative stacked welded TA1/Q235 steel composite plates

[J]. J. Eng. Sci. Technol., 2008, 30(3): 249

[本文引用: 1]

董成文, 李艳芳, 任学平.

TA1/Q235钢复合板累积叠轧焊界面特性

[J]. 工程科学学报, 2008, 30(3): 249

[本文引用: 1]

Zhao Z, Tang J, Liu H, et al.

Effect of rolling temperature on microstructure and mechanical properties of Ti/steel clad plates fabricated by cold spraying and hot-rolling

[J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2020, 795: 139982

[本文引用: 1]

Lei X, Ding W, Lu X, et al.

Interfacial modification of titanium/steel composites and its effect on the growth pattern of Fe-Ti compounds

[J]. Mater. Today Commun., 2024: 109289

[本文引用: 1]

Jiang B, Huang K, Cao Z, et al.

Thermodynamic study of titanium oxycarbide

[J]. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 2012, 43: 3510

[本文引用: 3]

Yang D, Luo Z, Xie G, et al.

Effect of vacuum level on microstructure and mechanical properties of titanium-steel vacuum roll clad plates

[J]. J. Iron Steel Res. Int., 2018, 25: 72

[本文引用: 1]

Geng F, Wang Y F. Fundamentals of Materials Engineering [M]. Nanjing: Nanjing University Press, 2021

[本文引用: 2]

耿 飞, 王玉丰. 材料工程基础 [M]. 南京: 南京大学出版社, 2021

[本文引用: 2]

Dimitrienko Y I.

Thermomechanics of Composites under High Temperatures

[M]. Springer Science & Business Media, 2013

[本文引用: 1]

Meschut G, Merklein M, Brosius A, et al.

Review on mechanical joining by plastic deformation

[J]. J. Adv. Join. Process., 2022, 5: 100113

[本文引用: 1]

Lesuer D R, Syn C K, Sherby O D, et al.

Mechanical behaviour of laminated metal composites

[J]. Int. Mater. Rev., 1996, 41(5): 169

[本文引用: 1]

Rajabi A, Ghazali M J, Daud A R.

Chemical composition, microstructure and sintering temperature modifications on mechanical properties of TiC-based cermet-A review

[J]. Mater. Des., 2015, 67: 95

[本文引用: 1]

Lei X, Ding W, Hu Y, et al.

Structural modification of TA2/Q355B composite interface and study of TiC stability mechanism

[J]. Mater. Sci. Technol., 2023, 39(15): 1939

[本文引用: 1]

Yu C, Fu L, Xiao H, et al.

Effect of carbon content on the microstructure and bonding properties of hot-rolling pure titanium clad carbon steel plates

[J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2021, 820: 141572

[本文引用: 1]

/