Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (5): 347-355    DOI: 10.11901/1005.3093.2023.340
  研究论文 本期目录 | 过刊浏览 |
喷涂粉末对CoNiCrAlY涂层组织和性能的影响
张甲, 高明浩, 栾胜家, 徐娜, 常辉, 邓予婷, 侯万良, 常新春()
中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Effect of Feedstock Powders on Microstructure and Properties of CoNiCrAlY Coatings
ZHANG Jia, GAO Minghao, LUAN Shengjia, XU Na, CHANG Hui, DENG Yuting, HOU Wanliang, CHANG Xinchun()
Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

张甲, 高明浩, 栾胜家, 徐娜, 常辉, 邓予婷, 侯万良, 常新春. 喷涂粉末对CoNiCrAlY涂层组织和性能的影响[J]. 材料研究学报, 2024, 38(5): 347-355.
Jia ZHANG, Minghao GAO, Shengjia LUAN, Na XU, Hui CHANG, Yuting DENG, Wanliang HOU, Xinchun CHANG. Effect of Feedstock Powders on Microstructure and Properties of CoNiCrAlY Coatings[J]. Chinese Journal of Materials Research, 2024, 38(5): 347-355.

全文: PDF(10436 KB)   HTML
摘要: 

用气雾化(GA)和水雾化(WA)工艺制备CoNiCrAlY粉末并测定其流动性和松装密度,将其作为初始粉末用超音速火焰喷涂工艺制备CoNiCrAlY涂层并进行真空热处理,采用XRD分析物相、用金相显微镜和扫描电镜分析显微结构和用万能试验机测试涂层的结合强度。结果表明,与WA相比,用GA制备的CoNiCrAlY粉末为球形或近球形,流动性好、松装密度大,制备的涂层结构致密均匀,β相含量高,孔隙率低,结合强度和硬度高。真空热处理后的两种涂层中粒子明显融合,β相的含量提高且分布更为均匀,孔隙率降低,硬度降低。真空热处理使WA涂层的结合强度提高,但是涂层内仍有较大的孔隙。真空热处理态的GA涂层,其抗氧化性能优异。

关键词 材料表面与界面GAWACoNiCrAlY粉末HVOF涂层真空热处理组织结构性能    
Abstract

Two type powders of CoNiCrAlY alloy were prepared by gas atomization (GA) and water atomization (WA) respectively, then which were used as feedstock powders to further prepared the corresponding coatings on a directionally solidified high temperature alloy DZ411by using high velocity oxygen fuel (HVOF) technique and subsequently they were subjected to proper subsequent vacuum heat treatment. The flowability and apparent density of the prepared powders were measured according to GB/T 1484 and GB/T 1479. Meanwhile, the phase composition, microstructure, microhardness, and adhesive strength to the substrate of the prepared coatings were characterized via optical microscopy and scanning electron microscopy, automatic hardness tester, and universal testing machine. The high temperature oxidation performance of the coatings/ DZ411 was assessed in air at 1050oC for 200 h. The results show that compared with WA, the CoNiCrAlY powder prepared by GA is spherical or nearly spherical, with good flowability and high apparent density. The prepared GA coating has a dense and uniform structure with high β phase content, low porosity, high adhesive strength and high microhardness. After vacuum heat treatment, mutual fusion of particles was clearly observed within the two coatings, while the amount of β phase increases and its distribution becomes much more uniform, correspondingly, their porosity and microhardness decrease. The adhesive strength of WA coating after vacuum heat treatment has been improved, but there are still larger pores within the coating. The vacuum heat treated GA coating presents much better oxidation resistance.

Key wordssurface and interface in the materials    gas atomization    water atomization    CoNiCrAlY powder    HVOF coating    vacuum heat treatment    microstructure    properties
收稿日期: 2023-07-11     
ZTFLH:  TG178  
基金资助:云南省材料基金工程II期(202302AB080020)
通讯作者: 常新春,研究员,xcchang@imr.ac.cn,研究方向为热喷涂涂层的研制与应用
Corresponding author: CHANG Xinchun, Tel: (024)23971865, E-mail:xcchang@imr.ac.cn
作者简介: 张 甲,女,1974年生,副研究员
ParametersValue
Barrel / mm152.4
Kerosene flow / GPH6
Oxygen flow / SCFH1950
Powder feeding rate / g·min-142
Spraying distance / mm380
Spraying angle / (°)90
表1  HVOF喷涂工艺参数
图1  用GA和WA制备的CoNiCrAlY粉末的XRD谱
图2  用GA和WA制备的CoNiCrAlY粉末的SEM形貌照片
图3  用GA和WA 制备的CoNiCrAlY涂层的XRD谱
图4  CoNiCrAlY涂层的截面组织
图5  用GA和WA制备的真空热处理态CoNiCrAlY涂层的X射线衍射谱
图6  用GA和WA制备的真空热处理态CoNiCrAlY涂层的截面组织照片
图7  用拉伸法测出的用GA和WA制备的CoNiCr-AlY涂层的结合强度
图8  用GA和WA制备的喷涂态和真空热处理态CoNiCrAlY涂层的拉伸断口形貌
图9  CoNiCrAlY涂层的显微硬度
图10  用GA和WA制备的喷涂态 CoNiCrAlY涂层在1050℃氧化200 h后的XRD谱
图11  用GA和WA制备的真空热处理态CoNiCrAlY涂层在1050℃氧化200 h后的XRD谱
图12  用GA和WA制备的喷涂态 CoNiCrAlY涂层氧化200 h的截面形貌
OAlCrCoNi
A55.0544.95---
B43.8713.0812.3513.1317.58
表2  TGO能谱分析
图13  用GA和WA制备的真空热处理态CoNiCrAlY涂层氧化200 h的截面形貌
1 Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296: 280
pmid: 11951028
2 Evans A G, Mumm D R, Hutchinson J W, et al. Mechanisms controlling the durability of thermal barrier coatings[J]. Prog. Mater. Sci., 2001, 46: 505
3 Guo H B, Gong S K, Xu H B. Progress in thermal barrier coatings for advanced aeroengines[J]. Mater. China, 2009, 28(S2): 18
3 郭洪波, 宫声凯, 徐惠彬. 先进航空发动机热障涂层技术研究进展[J]. 中国材料进展, 2009, 28(S2): 18
4 Wang B, Liu Y, Luan S J, et al. Microstructure design of CoNiCrAlY bonding coating and its influence on the bonding strength and thermal Sshock resistance of thermal barrier coatings[J]. Surf. Technol., 2023, 52(2): 263
4 王 博, 刘 洋, 栾胜家 等. CoNiCrAlY黏结层结构设计及其对热障涂层结合强度和抗热震性能的影响[J]. 表面技术, 2023, 52(2): 263
5 Vishnu S, Ramkumar P B, Deepak S, et al. Optimized thermal barrier coating for gas turbine blades[J]. Mater. Today: Proceedings 2019, 11: 912
6 Gurrappa I, Rao A S. Thermal barrier coatings for enhanced efficiency of gas turbine engines[J]. Surf. & Coat. Technol., 2006, 201: 3016
7 Peng X, Li W, Fu L B, et al. Role of Re in NiAl bond coating on isothermal oxidation behavior of a thermal barrier coating system at 1100oC[J]. Corros. Sci., 2023, 218: 111151
8 Oskay C, Galetz M C, Murakami H. Oxide scale formation and microstructural degradation of conventional, Pt- and Pt/Ir-modified NiAl diffusion coatings during thermocyclic exposure at 1100oC[J]. Corros. Sci., 2018, 144: 313
9 Shen M L, Zhu S L. Advancement of technologies for preparing high-performance aluminide coatings[J]. Aeronaut. Manufact. Tec-hnol., 2016, 21: 105
9 沈明礼, 朱胜龙. 先进铝化物涂层制备技术进展[J]. 航空制造技术. 2016, 21: 105
10 Chen W J, Song P, Gao D, et al. Review and outlook of metallic bond coats for thermal barrier coatings in aeroengine and industrial gas turbine applications[J]. J. Aeronaut. Mater., 2022, 42(01):15
10 陈卫杰, 宋 鹏, 高 栋 等. 航空发动机和工业燃气轮机热喷涂热障涂层用金属黏结层: 回顾与展望[J]. 航空材料学报, 2022, 42(01): 15
11 Galiullin T, Chyrkin A, Pillai R, et al. Effect of alloying elements in Ni-base substrate material on interdiffusion processes in MCrAlY-coated systems[J]. Surf. & Coat. Technol., 2018, 350: 359
12 Yuan K, Eriksson R, Peng R L, et al. Modeling of microstructural evolution and lifetime prediction of MCrAlY coatings on nickel based superalloys during high temperature oxidation[J]. Surf. & Coat. Technol., 2013, 232: 204
13 Yun G T, Li Q L, Cheng X D. The application of MCrAlY coatings on aeroengine hot-section components[J]. Therm. Spray Technol., 2015, 7(2): 6
13 运广涛, 李其连, 程旭东. MCrAlY涂层在航空发动机热端部件上的应用[J]. 热喷涂技术, 2015, 7(2): 6
14 Tang F, Ajdelsztajn L, Schoenung J M. Characterization of oxide scales formed on HVOF NiCrAlY coatings with various oxygen contents introduced during thermal spraying[J]. Scr. Mater., 2004, 51(1): 25
15 Khoddami A, Sabour A, Hadavi S M M. M.Microstructure formation in thermally-sprayed duplex and functionally graded NiCrAlY/Yttria-Stabilized Zirconia coatings[J]. Surf. & Coat. Technol., 2006, 201: 6019
16 Hu Y, Cai C Y, Wang Y G, et al. YSZ/NiCrAlY interface oxidation of APS thermal barrier coatings[J]. Corros. Sci., 2018, 142: 22
17 Li W S, Wang Y X. Influence of NiCoCrAlY spraying process on oxidation resistance of 8YSZ thermal barrier coatings[J]. Surf. Technol., 2019, 48(8): 263
17 李文生, 王裕熙. NiCoCrAlY黏结层喷涂工艺对8YSZ热障涂层抗氧化性能的影响[J]. 表面技术, 2019, 48(8): 263
18 Dong Y, Ren Z M, Lin X P, et al. Effect of HVOF-sprayed bond coat on the oxidation resistance of thermal barrier coating[J]. J. Mechan. Eng., 2010, 46(20): 46
18 董 允, 任志敏, 林晓娉 等. 超音速喷涂粘结层对热障涂层抗氧化性能的影响[J]. 机械工程学报, 2010, 46(20): 46
19 Wu C J, Yang J, Wang Q S. Effect of powder characteristics on the performance of HVOF sprayed carbide coatings[J]. J. Aerospace Manufact. Technol., 2002, 6: 9
19 吴朝军, 杨 杰, 王全胜. 粉末特性对HVOF喷涂碳化物涂层性能的影响[J]. 航天制造技术, 2002, 6: 9
20 Gao M H, Luan S J, Xu N, et al. Oxidation resistance of thermal barrier coating with vacuum heat treated double-layer bond coating[J]. Rare Metal Mater. & Eng., 2022, 51(2): 719
20 高明浩, 栾胜家, 徐 娜 等. 真空热处理双粘结层热障涂层抗氧化性能[J]. 稀有金属材料与工程, 2022, 51(2): 719
21 Chen X, Wu S, Liu Y, et al. High temperature oxidation behavior of CoNiCrAlY coating prepared by vacuum plasma spraying and vacuum heat treatment[J]. Appl. Surf. Sci., 2018, 427: 1040
22 Li S, Di Y L, Wang H D, et al. Progress on stress distribution and crack propagation behavior at the TGO interfaces of thermal barrier coatings[J]. Surf. Technol., 2021, 50(6): 138
22 李 帅, 底月兰, 王海斗 等. 热障涂层TGO界面应力分布及裂纹扩展行为的研究进展[J], 表面技术, 2021, 50(6): 138
23 Li T J, Li Y, Li J T, et al. Oxidation behavior of high-velocity oxygen fuel sprayed MCrAlY coatings[J]. Chin.Soc.for Elec.Eng., 2014, 34: 176
23 李太江, 李 勇, 李聚涛 等. 超音速火焰喷涂MCrAlY涂层氧化性能研究[J]. 中国电机工程学报, 2014, 34: 176
24 Zhang L W, Yu J M, Ning X J, et al. Effect of pre-oxidation vacuum degree on the high temperature oxidation behavior of cold sprayed CoNiCrAlY coatings[J]. Mater. Reports, 2022, 36(17): 21030092
24 张林伟, 余玖明, 宁先进 等. 预氧化真空度对冷喷涂CoNiCrAlY涂层高温氧化行为的影响[J]. 材料导报, 2022, 36(17): 21030092
[1] 徐汇, 张培垣, 徐娜娜, 刘涛, 张晓山, 王兵, 王应德. 耐高温SiO2/ZrO2 纳米纤维膜的力学和隔热性能[J]. 材料研究学报, 2024, 38(5): 365-372.
[2] 王仲楠, 郭慧, 母悦山. 基于多巴胺改性纳米复合水凝胶的制备和性能[J]. 材料研究学报, 2024, 38(4): 269-278.
[3] 王玉钊, 蒋中华, 贾春妮, 张玉妥, 王培. 等温淬火对纳米贝氏体钢的组织和力学性能的影响[J]. 材料研究学报, 2024, 38(4): 279-287.
[4] 马飞, 王闯, 郭武明, 史祥东, 孙建颖, 庞刚. 碳含量对CrN:a-C多相复合涂层摩擦学性能的影响[J]. 材料研究学报, 2024, 38(4): 297-307.
[5] 李云飞, 王金贺, 张龙, 李正坤, 付华萌, 朱正旺, 李宏, 王爱民, 张海峰. 退火温度对Fe35Ni30Cr20Al10Nb5 高熵合金的组织结构和性能的影响[J]. 材料研究学报, 2024, 38(4): 241-247.
[6] 吴厚燃, 段体岗, 马力, 邵刚勤, 张恒宇, 张海兵. 铝空气电池Al-Zn-In-Mg-Ga-Mn合金阳极的电化学性能[J]. 材料研究学报, 2024, 38(4): 257-268.
[7] 闫俊竹, 高明, 于晓明, 谭丽丽. CaAg的含量对可降解Zn-Li-Ca-Ag合金的组织和性能的影响[J]. 材料研究学报, 2024, 38(3): 177-186.
[8] 陈真勇, 魏欣欣, 徐妍婷, 张波, 马秀良. 电化学渗氮对不锈钢表面结构的影响[J]. 材料研究学报, 2024, 38(3): 161-167.
[9] 尹艳超, 吕逸帆, 刘千里, 许亚利, 蒋鹏, 余巍. 在室温和液氮温度Ti-Al-Fe合金的拉伸行为及其变形机理[J]. 材料研究学报, 2024, 38(3): 232-240.
[10] 秦艳利, 赵光普, 张昊, 倪丁瑞, 肖伯律, 马宗义. 选区激光熔融Al-30Si合金的微观组织和性能[J]. 材料研究学报, 2024, 38(1): 43-50.
[11] 马源, 王函, 倪忠强, 张建岗, 张若南, 孙新阳, 李处森, 刘畅, 曾尤. 碳纳米管/氧化锌协同增强碳纤维复合材料的电磁屏蔽性能[J]. 材料研究学报, 2024, 38(1): 61-70.
[12] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[13] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[14] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[15] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.