Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (7): 545-553    DOI: 10.11901/1005.3093.2019.571
  研究论文 本期目录 | 过刊浏览 |
扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为
公维炜1, 杨丙坤2(), 陈云2, 郝文魁2, 王晓芳2, 陈浩1
1.内蒙古电力科学研究院 呼和浩特 010020
2.全球能源互联网研究院有限公司 先进输电技术国家重点实验室 北京 102211
In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions
GONG Weiwei1, YANG Bingkun2(), CHEN Yun2, HAO Wenkui2, WANG Xiaofang2, CHEN Hao1
1.Inner Mongolia Power Research Institute, Hohhot 010020, China
2.State Key Laboratory of Advanced Transmission Technology, Global Energy Interconnection Research Institute, Beijing 102211, China
引用本文:

公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
Weiwei GONG, Bingkun YANG, Yun CHEN, Wenkui HAO, Xiaofang WANG, Hao CHEN. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. Chinese Journal of Materials Research, 2020, 34(7): 545-553.

全文: PDF(3368 KB)   HTML
摘要: 

将原位微区电化学与传统宏观电化学技术相结合,应用电化学扫描显微镜(SECM)技术和电化学阻抗谱技术并结合微观形貌分析,研究了碳钢涂层缺陷处在不同交流电流强度下的腐蚀行为。结果表明:SECM拓扑形貌直观反映了碳钢涂层缺陷处局部腐蚀过程中电化学活性点的变化。交流电流使涂层缺陷处腐蚀活性点的数量明显增多,且使表面腐蚀产物积累对腐蚀产生的抑制作用明显减弱;浸泡初期涂层缺陷处的腐蚀为电子转移控制过程,浸泡10 h后转为扩散控制过程;随着交流电流强度的增大和浸泡时间的延长涂层的剥离程度提高,点蚀坑的深度和宽度随之增大。

关键词 材料失效与保护原位碳钢腐蚀交流电流    
Abstract

The carbon steel corrosion behavior at defects of epoxy coating in the effect of different AC current densities was investigated by means of in situ micro-area electrochemistry and traditional macro-electrochemical techniques, namely electrochemical scanning microscopy (SECM) and electrochemical impedance spectroscopy techniques. SECM observation can directly reveal the change of electrochemical active points during the local corrosion process of carbon steel at coating defects. The results show that when AC current is present, the number of corrosion active points at the coating defects is significantly more than that in the absence of AC current, correspondingly, the inhibitory effect of the corrosion products is significantly weaker than that in the case without AC current. The corrosion at the coating defect at the initial stage of immersion is an electron transfer control process, and it is converted to a diffusion control process after soaking for 10 hours. With the increase of AC current intensity and immersion time the degree of coating peeling increases, and the depth and width of the pits increase.

Key wordsmaterials failure and protection    in situ    carbon steel    corrosion    AC current
收稿日期: 2019-12-05     
ZTFLH:  TG174.4  
基金资助:内蒙古电力(集团)有限责任公司2019年科技计划(2019-102)
作者简介: 公维炜,男,1981年生,博士,高级工程师
图1  SECM面扫描装置示意图
图2  在无交流电流情况下不同浸泡时间试样的SECM图像
图3  电流强度为50 A/m2、不同浸泡时间试样的SECM像
图4  电流强度为100 A/m2不同浸泡时间试样的SECM像
图5  电流强度为300 A/m2不同浸泡时间试样的SECM像
AC current density/A·m-2Maximum anode current peak/pA
0 h5 h10 h24 h
061.467.698.8125.2
50 A/m2114.0236.0197.0308.0
100 A/m259.2151.0187.0385.0
300 A/m263.0178.0192.0437.0
表1  不同交流电流强度和浸泡时间涂层缺陷处的最大阳极电流峰值
图6  不同交流电流强度和浸泡时间涂层缺陷处的探针扫描电流
图7  不同交流电流强度和浸泡时间涂层缺陷处的Nyquest图和Bode图
图8  涂层缺陷试样的电化学阻抗谱等效电路图
AC current densityImmersion time

Cf

/μF·cm-2

Qd

Rf

/Ω·cm2

Rp

/Ω·cm2

Cd

/μF·cm-2

n
50 A/m20 h2.71×10-36.660.79164.38.95×104
5 h7.87×10-355.50.75116.96.17×104
10 h8.59×10-331.50.9545.9420.55
24 h3.72×10-3103.10.70119.35.06×104
100 A/m20 h2.71×10-36.660.79164.38.95×104
5 h3.90×10-38.090.80136.54.95×104
10 h1.12×10-22730.7036.551.51×104
24 h1.18×10-246.60.78114.65.65×104
300 A/m20 h8.33×10-39.650.77138.96.77×104
5 h1.49×10-294.90.7468.733.09×104
10 h15.968.40.6667.691.30×104
24 h9.06×10-371.80.75252.83.34×104
表2  各等效电路元件拟合结果
图9  不同交流电流强度和浸泡时间涂层缺陷处的Rp变化
AC current densityImmersion time
5 h10 h24 h
0 A/m215.525.450.8
50 A/m278.8115.2143.2
100 A/m285.6135.5154.1
300 A/m292.7153.1238.4
表3  不同交流电流强度和浸泡时间涂层缺陷处的腐蚀坑深度
[1] Jiang Z T, Du Y X, Dong L, et al. Effect of AC current on corrosion potential of Q235 steel [J]. Acta Metall. Sin., 2011, 47: 997
doi: 10.3724/SP.J.1037.2011.00040
[1] (姜子涛, 杜艳霞, 董亮等. 交流电对Q235钢腐蚀电位的影响规律研究 [J]. 金属学报, 2011, 47: 997)
doi: 10.3724/SP.J.1037.2011.00040
[2] Zhu M, Ma J, Yuan Y F, et al. Corrosion behavior of X65 pipeline steel with different microstructure in simulated solution of acidic soil under AC interference [J]. Trans. Mater. Heat Treat., 2018, 39(10): 67
[2] (朱敏, 马俊, 袁永锋等. 交流干扰下不同组织X65钢在酸性土壤模拟溶液中的腐蚀行为 [J]. 材料热处理学报, 2018, 39(10): 67)
[3] Tang D Z, Du Y X, Lu M X. Recent advances in testing and risk assessment of ac interference with buried piplines [J]. Corros. Sci. Prot. Technol., 2018, 30: 311
[3] (唐德志, 杜艳霞, 路民旭. 埋地管道交流干扰有效检测技术及风险评价方法最新研究进展 [J]. 腐蚀科学与防护技术, 2018, 30: 311)
[4] Cao F H, Xia Y, Liu W J, et al. Basic principles and applications of SECM in metal corrosion [J]. J. Electrochem., 2013, 19: 393
[4] (曹发和, 夏妍, 刘文娟等. SECM基本原理及其在金属腐蚀中的应用 [J]. 电化学, 2013, 19: 393)
[5] Liu H Y, Fan F R F, Lin C W, et al. Scanning electrochemical and tunneling ultramicroelectrode microscope for high-resolution examination of electrode surfaces in solution [J]. J. Am. Chem. Soc., 1986, 108: 3838
[6] Zhang M M, Meng J, Huang X Y, et al. Pitting corrosion behaviors of 304 stainless steel by studied spatial electrochemical scanning microscopy [J]. Corros. Prot., 2012, 33: 482
[6] (张明明, 孟军, 黄晓义等. 利用SECM技术研究304不锈钢的点蚀行为 [J]. 腐蚀与防护, 2012, 33: 482)
[7] Zhou H R, Ma J, Li X G, et al. Corrosion study of pure aluminum in 0.6mol/L NaCl solution by SECM [J]. J. Aeronaut. Mater., 2009, 29(2): 8
[7] (周和荣, 马坚, 李晓刚, 等. 纯铝在0.6mol/LNaCl溶液中腐蚀行为的SECM分析 [J]. 航空材料学报, 2009, 29(2): 8)
[8] Wang X Y. Study on Corrosion behavior of pure magnesium—based on scanning electrochemical microscopy generation/collection and feedback mode [D]. Hangzhou: Zhejiang University, 2015
[8] (王新印. 纯镁腐蚀行为研究-基于扫描电化学显微镜产生/收集和反馈模式 [D]. 杭州: 浙江大学, 2015)
[9] González-García Y, García S J, Hughes A E, et al. A combined redox-competition and negative-feedback SECM study of self-healing anticorrosive coatings [J]. Electrochem. Commun., 2011, 13: 1094
[10] Souto R M, González-García Y, González S. Evaluation of the corrosion performance of coil-coated steel sheet as studied by scanning electrochemical microscopy [J]. Corros. Sci., 2008, 50: 1637
[11] Iannucci L, Ríos-Rojas J F, Angelini E, et al. Electrochemical characterization of innovative hybrid coatings for metallic artefacts [J]. Eur. Phys. J. Plus, 2018, 133: 522
doi: 10.1140/epjp/i2018-12368-3
[12] Vega J, Scheerer H, Andersohn G, et al. Experimental studies of the effect of Ti interlayers on the corrosion resistance of TiN PVD coatings by using electrochemical methods [J]. Corros. Sci., 2018, 133: 240
[13] Wang X Y, Xia Y, Zhou Y R, et al. Corrosion behavior of pure mg based on generation/collection and feedback modes of scanning electrochemical microscopy [J]. Acta Metall. Sin., 2015, 51: 631
[13] (王新印, 夏妍, 周亚茹等. 基于扫描电化学显微镜产生/收集和反馈模式研究纯Mg腐蚀行为 [J]. 金属学报, 2015, 51: 631)
[14] Ding Q M, Li Z L. Effect of alternating stray current on degradation of epoxy resin coating in immersion [J]. Corros. Prot., 2018, 39: 776
[14] (丁清苗, 李自力. 交流杂散电流对环氧树脂涂层浸泡失效的影响 [J]. 腐蚀与防护, 2018, 39: 776)
[15] Li Z L, Ding Q M, Zhang Y F, et al. Optimal cathodic protection potential for X70 steel with AC interference determined by electrochemical methods [J]. Corros. Prot., 2010, 31: 436
[15] (李自力, 丁清苗, 张迎芳等. 用电化学方法建立交流干扰下X70钢的最佳阴极保护电位 [J]. 腐蚀与防护, 2010, 31: 436)
[16] Tu C Y, Xu C, Wang X H, et al. Effects of stray AC on corrosion of 3-layer polyethylene coated X70 steel and cathodic delamination of coating with defects [J]. Total Corros. Control, 2017, 31(8): 13
[16] (涂承媛, 徐成, 王新华等. 交流杂散电流对涂覆3PE涂层的X70钢腐蚀及涂层剥离行为影响规律研究 [J]. 全面腐蚀控制, 2017, 31(8): 13)
[17] Fan Y M. Study on the influence of stray currenton the metal corrosion behavior underdisbonded coating [D]. Tianjin: Civil Aviation University of China, 2017
[17] (范玥铭. 杂散电流对剥离涂层下金属腐蚀行为影响的研究 [D]. 天津: 中国民航大学, 2017)
[18] Chen X, Li X G, Du C W, et al. Effects of solution environments on corrosion behaviors of X70 steels under simulated disbonded coating [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 35
[18] (陈旭, 李晓刚, 杜翠薇等. 溶液环境对模拟剥离涂层下X70钢腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2010, 30: 35)
[19] Wang Y, Yan Y G, Dong C F, et al. Effect of stray current on corrosion of Q235, 16Mn and X70 steels with damaged coating [J]. Corros. Sci. Prot. Technol., 2010, 22: 117
[19] (王燕, 闫永贵, 董超芳等. 涂层破损时杂散电流对Q235、16Mn、X70钢腐蚀的影响 [J]. 腐蚀科学与防护技术, 2010, 22: 117)
[20] Shen T. Effect of AC on corrosion behavior of buried metal pipeline under stripped coating defects [D]. Tianjin: Civil Aviation University of China, 2019
[20] (沈陶. AC对剥离涂层缺陷下埋地金属管道腐蚀行为的影响研究 [D]. 天津: 中国民航大学, 2019)
[21] Wang X H, Wang Z Q, Chen Y C, et al. Effect of ac stray current on corrosion and stripping behavior of x70 pipeline steel under 3PE coating [J]. Surface Technol., 2018, 47(11): 142
[21] (王新华, 王祖全, 陈迎春等. 交流杂散电流对X70管线钢3PE防腐层下腐蚀及剥离行为的影响 [J]. 表面技术, 2018, 47(11): 142)
[1] 郭飞, 郑成武, 王培, 李殿中. 稀土元素对低碳钢中奥氏体-铁素体相变动力学的影响[J]. 材料研究学报, 2023, 37(7): 495-501.
[2] 蒋梦蕾, 代斌斌, 陈亮, 刘慧, 闵师领, 杨帆, 侯娟. 选区激光熔化成形尺寸对304L不锈钢点蚀性能的影响[J]. 材料研究学报, 2023, 37(5): 353-361.
[3] 张帅杰, 吴谦, 陈志堂, 郑滨松, 张磊, 徐翩. MnMg-Y-Cu合金的组织和性能的影响[J]. 材料研究学报, 2023, 37(5): 362-370.
[4] 杨宝磊, 刘廷光, 苏香林, 范宇, 邱亮, 陆永浩. 热老化对316LN力学性能和晶间腐蚀敏感性的影响[J]. 材料研究学报, 2023, 37(5): 381-390.
[5] 陈杰, 李红英, 周文浩, 张青学, 汤伟, 刘丹. 热输入对Q1100钢焊接接头低温韧性及耐蚀性能的影响[J]. 材料研究学报, 2022, 36(8): 617-627.
[6] 蔡雨升, 韩洪智, 任德春, 吉海宾, 雷家峰. 化学腐蚀工艺对激光选区熔化成形TC4钛合金表面粗糙度的影响[J]. 材料研究学报, 2022, 36(6): 435-442.
[7] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[8] 胡海波, 朱丽慧, 段元满, 吴晓春, 顾炳福. 原位研究M2高速钢微裂纹的萌生和扩展[J]. 材料研究学报, 2022, 36(5): 365-372.
[9] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[10] 刘思妤, 李正元, 陈立佳, 李锋. 原位自生纳米Al2O3/Al-Zn-Cu复合材料的力学性能[J]. 材料研究学报, 2022, 36(4): 307-313.
[11] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[12] 袁强强, 汪志刚, 江永芳, 张迎晖, 黄安康, 叶洁云. 温轧温度对Cr-Ti-B系低碳钢组织与织构的影响[J]. 材料研究学报, 2022, 36(2): 81-89.
[13] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[14] 宗平, 李世伟, 陈红, 苗赛男, 张慧, 李超. 碳包覆纳米铜的原位热解法制备及其稳定性[J]. 材料研究学报, 2022, 36(11): 829-836.
[15] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.