Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (1): 9-17    DOI: 10.11901/1005.3093.2016.147
  本期目录 | 过刊浏览 |
涂覆热障涂层构件的热梯度机械疲劳行为研究
黄丰1,聂铭1,林介东1,华旭2,陈国锋2,周忠娇3()
1 广东电网有限责任公司电力科学研究院 广州 510080
2 西门子中国研究院 上海 200082
3 清华大学 摩擦学国家重点实验室微纳制造分室 北京 100084
The Thermal Gradient Mechanical Fatigue Behavior of Nickel-based Superalloy with Thermal Barrier Coatings
Feng HUANG1,Ming NIE1,Jiedong LIN1,Xu HUA2,Guofeng CHEN2,Zhongjiao ZHOU3()
1 Guangdong Power Grid Co.,Ltd.,Electric Power Research Institute,Guangzhou 510080,China
2 Corporate Technology,Siemens,Shanghai 200082,China
3 Division of Micro/Nano Manufacturing,State Key Laboratory of Tribology,Tsinghua University,Beijing 100084,China
引用本文:

黄丰,聂铭,林介东,华旭,陈国锋,周忠娇. 涂覆热障涂层构件的热梯度机械疲劳行为研究[J]. 材料研究学报, 2017, 31(1): 9-17.
Feng HUANG, Ming NIE, Jiedong LIN, Xu HUA, Guofeng CHEN, Zhongjiao ZHOU. The Thermal Gradient Mechanical Fatigue Behavior of Nickel-based Superalloy with Thermal Barrier Coatings[J]. Chinese Journal of Materials Research, 2017, 31(1): 9-17.

全文: PDF(4528 KB)   HTML
摘要: 

研究了应变幅、预氧化及高温保载时间对涂覆热障涂层高温合金样品的热梯度机械疲劳性能的影响。结果表明,随应变幅增大,样品疲劳寿命降低。随着预氧化及高温保载时间的增加,样品的氧化损伤增大,疲劳寿命也不断降低。试验过程中,粘结层氧化形成的热生长氧化物层(TGO层)破裂而萌生裂纹,裂纹沿粘结层/TGO层界面扩展而形成分层裂纹,分层裂纹与陶瓷层内贯穿裂纹连接导致陶瓷层剥落而失效。考虑到热障涂层内最大应力及氧化损伤,建立了一个涂覆热障涂层高温合金样品的热梯度机械疲劳寿命预测模型。

关键词 材料表面与界面热障涂层热梯度机械疲劳寿命应变幅预氧化高温保载时间    
Abstract

As the key material of components used for elevated temperature gas turbines,the failure mechanism of thermal barrier coatings (TBCs) under service conditions has been the hot spot of research for a long time. The influence of strain range,pre-oxidation and dwelling time at the maximum temperature on the thermal gradient mechanical fatigue (TGMF) behavior of a superalloy with TBCs was investigated. It is demonstrated that the fatigue life decreases with the increase of strain range. With the increase of pre-oxidation and dwelling time,more oxidation damage is induced,thus resulting in shortened fatigue life. During tests,bond coat gets oxidized and forms thermally grown oxide (TGO) at the bond coat/ceramic top coat interface. Cracks are initiated in TGO and propagate along the bond coat/ceramic top coat interface,forming laminated cracks. When the laminated ion connect with the segmentation cracks in ceramic top coat,the TBCs spall. At last,a TGMF lifetime model is established by considering the influence of mechanical strain and oxidation damage.

Key wordssurface and interface in the materials    thermal barrier coating    thermal gradient mechanical fatigue    strain range    pre-oxidation    dwelling time
收稿日期: 2016-03-21     
基金资助:南方电网科研项目(KGD2014-0595)
Element Co Cr Mo W Al Ti Ta C Zr Ni
10 14 1.5 4 4 3 5 0.08 0.03 Bal.
表1  MGA1400高温合金基体的化学成分
图1  TGMF试样示意图(a)及涂覆热障涂层的试样(b)
图2  热梯度机械疲劳试验机(a)及热电偶及应变计连接方式(b)
图3  热梯度机械疲劳试验加载曲线
Current/A Voltage/V Carrier gas pressure/MPa Feeding rate/rmin-1
Bond coat 500 32 0.413 2
Ceramic coat 650 34 0.413 2.3
表2  热障涂层喷涂工艺参数
Sample No. Pre-oxidation Dwelling time Phase angle Strain range
1 - - OP -0.45%
2 - 5 min OP -0.45%
3 1000oC/100 h 5 min OP -0.45%
4 1000oC/100 h 5 min OP -0.30%
表3  热梯度机械疲劳样品的试验条件
图4  制备态热障涂层的组织形貌: (a)整体形貌, (b)基体/粘结层界面, (c)粘结层形貌, (d)粘结层/陶瓷层界面, (e)陶瓷层形貌
图5  热障涂层材料体系的热梯度机械疲劳寿命
图6  热梯度机械疲劳试验第一周和稳态滞后回线的比较
图7  热梯度机械疲劳试验后样品4的横截面形貌
OP, -0.30% OP, -0.45%
BC 900oC 241.34 304.70
200oC 114.62 114.62
TGO 900oC 431.48 594.68
200oC -105.08 -105.08
TC 900oC -10.14 -5.19
200oC 85.04 85.04
表4  热障涂层中承受的径向应力
[1] Padture N P, Gell M, Jordan E H.Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296: 280
[2] Chen Q F, Fan S K, Gong J B, et al.High temperature cyclic oxidation behaviour of ceramic thermal barrier coating[J]. Mater. Sci. Porgr., 1992, 6: 414
[2] (陈全芳, 范世凯, 宫俊波等. 陶瓷热障涂层的高温循环氧化行为[J]. 材料研究学报, 1992, 6: 414)
[3] Dong J M, Li J R, Mou R D, et al.Effect of high temperature heat treatment on elements interdiffusion behavior and stress rupture characteristics of DD6 single crystal superalloy with thermal barrier coatings[J]. J. Mater. Eng., 2014, (6): 51
[3] (董建民, 李嘉荣, 牟仁德等. 高温热处理对带热障涂层DD6单晶高温合金互扩散行为及持久断裂特征的影响[J]. 材料工程, 2014, (6): 51)
[4] Geng R, Zhou B Z, Qi H Y, et al.The bonding strength and failure modes of thermal barrier coatings[J]. J. Aerosp. Power, 2003, 18: 50
[4] (耿瑞, 周柏卓, 齐红宇等. 热障涂层结合强度及失效模式研究[J]. 航空动力学报, 2003, 18: 50)
[5] Cruse T A, Stewart S E, Ortiz M.Thermal barrier coating life prediction model development[J]. J. Eng. Gas Turb. Power, 1988, 110: 610
[6] Meier S M, Nissley D M, Sheffler K D.Thermal barrier coating life prediction model development-phase 2. Final report[R].NASA-CR-189111, 1991
[7] Zhang Y J, Sun X F, Jin T, et al.Microstructure of air plasma sprayed YSZ nanostructured thermal barrier coating[J]. Acta. Metall. Sin., 2003, 39: 395
[7] (张玉娟, 孙晓峰, 金涛等. 大气等离子喷涂的YSZ纳米热障涂层的微观结构[J]. 金属学报, 2003, 39: 395)
[8] Lima C R C, Guilemany J M. Adhesion improvements of thermal barrier coatings with HVOF thermally sprayed bond coats[J]. Surf. Coat. Technol., 2007, 201: 4694
[9] Yuan X H, Guo H B, Peng H, et al.High temperature thermo-physical properties of and preparation of a novel thermal barrier coating Gd2Zr2O7-8YSZ[J]. Acta Mater. Compos. Sin., 2013, 30: 138
[9] (袁小虎, 郭洪波, 彭徽等. Gd2Zr2O7陶瓷的高温热物理性能及Gd2Zr2O7-8YSZ双涂层制备[J]. 复合材料学报, 2013, 30: 138)
[10] Su Z F, Liu H F, Wang Y L.High temperature phase stability, sintering resistance and thermal conductivity of La2O3 and Y2O3 doped ZrO2 composites[J]. Acta Mater. Compos. Sin., 2015, 32: 1381
[10] (苏正夫, 刘怀菲, 王雅雷. La2O3和Y2O3掺杂ZrO2复合材料的高温相稳定性、抗烧结性及热导率[J]. 复合材料学报, 2015, 32: 1381)
[11] Franclois M, Rémy L.Thermal-mechanical fatigue of Mar-M 509 superalloy. Comparison with low-cycle fatigue behaviour[J]. Fatigue Fract. Eng. Mater. Struct., 1991, 14: 115
[12] Zhang G D, Liu S L, He Y H, et al.Life predication of thermomechanical fatigue in DS superalloy DZ125[J]. J. Aerosp. Power, 2004, 19: 17
[12] (张国栋, 刘绍伦, 何玉怀等. 定向合金DZ125热/机械疲劳寿命预测模型评估[J]. 航空动力学报, 2004, 19: 17)
[13] Vasseur E, Rémy L.High temperature low cycle fatigue and thermal-mechanical fatigue behaviour of an oxide-dispersion-strengthened nickel-base superalloy[J]. Mater. Sci. Eng. A, 1994, 184(1): 1
[14] Sun E, Heffernan T, Helmink R.Stress rupture and fatigue in thin wall single crystal superalloys with cooling holes[A]. Huron E S, Reed R C, Hardy M C. Superalloys[M]. Warrendale: The Minerals, Metals, & Materials Society, 2012: 351
[15] Pahlavanyali S, Rayment A, Roebuck B, et al.Thermo-mechanical fatigue testing of superalloys using miniature specimens[J]. Int. J. Fatigue, 2008, 30: 397
[16] Tzimas E, Müllejans H, Peteves S D, et al.Failure of thermal barrier coating systems under cyclic thermomechanical loading[J]. Acta Mater., 2000, 48: 4699
[17] Huang Z W, Wang Z G, Zhu S J, et al.Thermomechanical fatigue behavior and life prediction of a cast nickel-based superalloy[J]. Mater. Sci. Eng. A, 2006, 432: 308
[18] Lawson L, Fine M E, Jeannotte D.Thermomechanical fatigue of a lead alloy[J]. Metall. Trans. A, 1991, 22: 1059
[19] Zhang J X, Harada H, Koizumi Y, et al.Crack appearance of single-crystal nickel-base superalloys after thermomechanical fatigue failure[J]. Scr. Mater., 2009, 61: 1105
[20] Christ H J. Effect of environment on thermomechanical fatigue life[J]. Mater. Sci. Eng. A, 2007, 468-470: 98
[21] Va?en R, Kerkhoff G, Ahrens M, et al.Life time prediction model for plasma-sprayed thermal barrier coatings based on a micromechanical approach[A]. Heinrich J G, Aldinger F. Ceramic Materials and Components for Engines[M]. New York: Wiley-VCH Verlag GmbH, 2001: 305
[22] Lee J M, Song H, Kim Y, et al.Evaluation of thermal gradient mechanical fatigue characteristics of thermal barrier coating, considering the effects of thermally grown oxide[J]. Int. J. Precis. Eng. Manuf., 2015, 16: 1675
[23] Zhou Y C, Hashida T.Coupled effects of temperature gradient and oxidation on thermal stress in thermal barrier coating system[J]. Int. J. Solids Struct., 2001, 38: 4235
[24] Ta N, Zhang L J, Tang Y, et al.Effect of temperature gradient on microstructure evolution in Ni-Al-Cr bond coat/substrate systems: a phase-field study[J]. Surf. Coat. Technol., 2015, 261: 364
[25] Chen Z B, Wang Z G, Zhu S J.Thermomechanical fatigue behavior of an air plasma sprayed thermal barrier coating system[J]. Mater. Sci. Eng. A, 2011, 528: 8396
[26] Wright P K.Influence of cyclic strain on life of a PVD TBC[J]. Mater. Sci. Eng. A, 1998, 245: 191
[27] Sun F, Li J L, Zhang F S.Review on residual thermal stress of ceramic bonded joint with metal[J]. Weld. Join., 2006, (11): 22
[27] (孙福, 李京龙, 张赋升. 陶瓷与金属焊接接头残余热应力研究[J]. 焊接, 2006, (11): 22)
[28] Zhou C G, Wang N, Xu H B. Comparison of thermal cycling behavior of plasma-sprayed nanostructured and traditional thermal barrier coatings[J]. Mater. Sci. Eng. A, 2007, 452-453: 569
[29] He L Z, Zheng Q, Sun X F, et al.Low ductility at intermediate temperature of Ni-base superalloy M963[J]. Mater. Sci. Eng. A, 2004, 380: 340
[30] Zheng F, He Y H, Su B.Analysis of low cycle fatigue life prediction models[J]. Res. Explor. Lab., 2007, 26: 189
[30] (郑飞, 何玉怀, 苏彬. 低周疲劳寿命预测模型分析[J]. 试验室研究与探索, 2007, 26: 189)
[31] Chan K, Cheruvu S, Viswanathan R. Development of a thermal barrier coating life model[A]. ASME Turbo Expo2003, Collocated with the 2003 International Joint Power Generation Conference[C]. Atlanta, Georgia, USA: ASME, 2003: GT2003-38171.
[1] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[5] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[6] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[7] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[8] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[9] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[10] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[11] 李瑞一, 谢敏, 张永和, 裴训, 刘洋, 宋希文. Er2O3掺杂Gd2(Zr0.8Ti0.2)2O7陶瓷的物理性能[J]. 材料研究学报, 2022, 36(1): 49-54.
[12] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
[13] 李修贤, 邱万奇, 焦东玲, 钟喜春, 刘仲武. α籽晶促进低温反应溅射沉积α-Al2O3薄膜[J]. 材料研究学报, 2022, 36(1): 8-12.
[14] 范金辉, 李鹏飞, 梁晓军, 梁建平, 徐长征, 蒋力, 叶祥熙, 李志军. 镍-不锈钢复合板轧制过程中界面的结合机制[J]. 材料研究学报, 2021, 35(7): 493-500.
[15] 卢壹梁, 杜瑶, 王成, 辛丽, 朱圣龙, 王福会. 纳米Al2O3TiO2改性有机硅涂层对304不锈钢高温氧化行为的影响[J]. 材料研究学报, 2021, 35(6): 458-466.