|
|
涂覆热障涂层构件的热梯度机械疲劳行为研究 |
黄丰1,聂铭1,林介东1,华旭2,陈国锋2,周忠娇3( ) |
1 广东电网有限责任公司电力科学研究院 广州 510080 2 西门子中国研究院 上海 200082 3 清华大学 摩擦学国家重点实验室微纳制造分室 北京 100084 |
|
The Thermal Gradient Mechanical Fatigue Behavior of Nickel-based Superalloy with Thermal Barrier Coatings |
Feng HUANG1,Ming NIE1,Jiedong LIN1,Xu HUA2,Guofeng CHEN2,Zhongjiao ZHOU3( ) |
1 Guangdong Power Grid Co.,Ltd.,Electric Power Research Institute,Guangzhou 510080,China 2 Corporate Technology,Siemens,Shanghai 200082,China 3 Division of Micro/Nano Manufacturing,State Key Laboratory of Tribology,Tsinghua University,Beijing 100084,China |
引用本文:
黄丰,聂铭,林介东,华旭,陈国锋,周忠娇. 涂覆热障涂层构件的热梯度机械疲劳行为研究[J]. 材料研究学报, 2017, 31(1): 9-17.
Feng HUANG,
Ming NIE,
Jiedong LIN,
Xu HUA,
Guofeng CHEN,
Zhongjiao ZHOU.
The Thermal Gradient Mechanical Fatigue Behavior of Nickel-based Superalloy with Thermal Barrier Coatings[J]. Chinese Journal of Materials Research, 2017, 31(1): 9-17.
[1] | Padture N P, Gell M, Jordan E H.Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296: 280 | [2] | Chen Q F, Fan S K, Gong J B, et al.High temperature cyclic oxidation behaviour of ceramic thermal barrier coating[J]. Mater. Sci. Porgr., 1992, 6: 414 | [2] | (陈全芳, 范世凯, 宫俊波等. 陶瓷热障涂层的高温循环氧化行为[J]. 材料研究学报, 1992, 6: 414) | [3] | Dong J M, Li J R, Mou R D, et al.Effect of high temperature heat treatment on elements interdiffusion behavior and stress rupture characteristics of DD6 single crystal superalloy with thermal barrier coatings[J]. J. Mater. Eng., 2014, (6): 51 | [3] | (董建民, 李嘉荣, 牟仁德等. 高温热处理对带热障涂层DD6单晶高温合金互扩散行为及持久断裂特征的影响[J]. 材料工程, 2014, (6): 51) | [4] | Geng R, Zhou B Z, Qi H Y, et al.The bonding strength and failure modes of thermal barrier coatings[J]. J. Aerosp. Power, 2003, 18: 50 | [4] | (耿瑞, 周柏卓, 齐红宇等. 热障涂层结合强度及失效模式研究[J]. 航空动力学报, 2003, 18: 50) | [5] | Cruse T A, Stewart S E, Ortiz M.Thermal barrier coating life prediction model development[J]. J. Eng. Gas Turb. Power, 1988, 110: 610 | [6] | Meier S M, Nissley D M, Sheffler K D.Thermal barrier coating life prediction model development-phase 2. Final report[R].NASA-CR-189111, 1991 | [7] | Zhang Y J, Sun X F, Jin T, et al.Microstructure of air plasma sprayed YSZ nanostructured thermal barrier coating[J]. Acta. Metall. Sin., 2003, 39: 395 | [7] | (张玉娟, 孙晓峰, 金涛等. 大气等离子喷涂的YSZ纳米热障涂层的微观结构[J]. 金属学报, 2003, 39: 395) | [8] | Lima C R C, Guilemany J M. Adhesion improvements of thermal barrier coatings with HVOF thermally sprayed bond coats[J]. Surf. Coat. Technol., 2007, 201: 4694 | [9] | Yuan X H, Guo H B, Peng H, et al.High temperature thermo-physical properties of and preparation of a novel thermal barrier coating Gd2Zr2O7-8YSZ[J]. Acta Mater. Compos. Sin., 2013, 30: 138 | [9] | (袁小虎, 郭洪波, 彭徽等. Gd2Zr2O7陶瓷的高温热物理性能及Gd2Zr2O7-8YSZ双涂层制备[J]. 复合材料学报, 2013, 30: 138) | [10] | Su Z F, Liu H F, Wang Y L.High temperature phase stability, sintering resistance and thermal conductivity of La2O3 and Y2O3 doped ZrO2 composites[J]. Acta Mater. Compos. Sin., 2015, 32: 1381 | [10] | (苏正夫, 刘怀菲, 王雅雷. La2O3和Y2O3掺杂ZrO2复合材料的高温相稳定性、抗烧结性及热导率[J]. 复合材料学报, 2015, 32: 1381) | [11] | Franclois M, Rémy L.Thermal-mechanical fatigue of Mar-M 509 superalloy. Comparison with low-cycle fatigue behaviour[J]. Fatigue Fract. Eng. Mater. Struct., 1991, 14: 115 | [12] | Zhang G D, Liu S L, He Y H, et al.Life predication of thermomechanical fatigue in DS superalloy DZ125[J]. J. Aerosp. Power, 2004, 19: 17 | [12] | (张国栋, 刘绍伦, 何玉怀等. 定向合金DZ125热/机械疲劳寿命预测模型评估[J]. 航空动力学报, 2004, 19: 17) | [13] | Vasseur E, Rémy L.High temperature low cycle fatigue and thermal-mechanical fatigue behaviour of an oxide-dispersion-strengthened nickel-base superalloy[J]. Mater. Sci. Eng. A, 1994, 184(1): 1 | [14] | Sun E, Heffernan T, Helmink R.Stress rupture and fatigue in thin wall single crystal superalloys with cooling holes[A]. Huron E S, Reed R C, Hardy M C. Superalloys[M]. Warrendale: The Minerals, Metals, & Materials Society, 2012: 351 | [15] | Pahlavanyali S, Rayment A, Roebuck B, et al.Thermo-mechanical fatigue testing of superalloys using miniature specimens[J]. Int. J. Fatigue, 2008, 30: 397 | [16] | Tzimas E, Müllejans H, Peteves S D, et al.Failure of thermal barrier coating systems under cyclic thermomechanical loading[J]. Acta Mater., 2000, 48: 4699 | [17] | Huang Z W, Wang Z G, Zhu S J, et al.Thermomechanical fatigue behavior and life prediction of a cast nickel-based superalloy[J]. Mater. Sci. Eng. A, 2006, 432: 308 | [18] | Lawson L, Fine M E, Jeannotte D.Thermomechanical fatigue of a lead alloy[J]. Metall. Trans. A, 1991, 22: 1059 | [19] | Zhang J X, Harada H, Koizumi Y, et al.Crack appearance of single-crystal nickel-base superalloys after thermomechanical fatigue failure[J]. Scr. Mater., 2009, 61: 1105 | [20] | Christ H J. Effect of environment on thermomechanical fatigue life[J]. Mater. Sci. Eng. A, 2007, 468-470: 98 | [21] | Va?en R, Kerkhoff G, Ahrens M, et al.Life time prediction model for plasma-sprayed thermal barrier coatings based on a micromechanical approach[A]. Heinrich J G, Aldinger F. Ceramic Materials and Components for Engines[M]. New York: Wiley-VCH Verlag GmbH, 2001: 305 | [22] | Lee J M, Song H, Kim Y, et al.Evaluation of thermal gradient mechanical fatigue characteristics of thermal barrier coating, considering the effects of thermally grown oxide[J]. Int. J. Precis. Eng. Manuf., 2015, 16: 1675 | [23] | Zhou Y C, Hashida T.Coupled effects of temperature gradient and oxidation on thermal stress in thermal barrier coating system[J]. Int. J. Solids Struct., 2001, 38: 4235 | [24] | Ta N, Zhang L J, Tang Y, et al.Effect of temperature gradient on microstructure evolution in Ni-Al-Cr bond coat/substrate systems: a phase-field study[J]. Surf. Coat. Technol., 2015, 261: 364 | [25] | Chen Z B, Wang Z G, Zhu S J.Thermomechanical fatigue behavior of an air plasma sprayed thermal barrier coating system[J]. Mater. Sci. Eng. A, 2011, 528: 8396 | [26] | Wright P K.Influence of cyclic strain on life of a PVD TBC[J]. Mater. Sci. Eng. A, 1998, 245: 191 | [27] | Sun F, Li J L, Zhang F S.Review on residual thermal stress of ceramic bonded joint with metal[J]. Weld. Join., 2006, (11): 22 | [27] | (孙福, 李京龙, 张赋升. 陶瓷与金属焊接接头残余热应力研究[J]. 焊接, 2006, (11): 22) | [28] | Zhou C G, Wang N, Xu H B. Comparison of thermal cycling behavior of plasma-sprayed nanostructured and traditional thermal barrier coatings[J]. Mater. Sci. Eng. A, 2007, 452-453: 569 | [29] | He L Z, Zheng Q, Sun X F, et al.Low ductility at intermediate temperature of Ni-base superalloy M963[J]. Mater. Sci. Eng. A, 2004, 380: 340 | [30] | Zheng F, He Y H, Su B.Analysis of low cycle fatigue life prediction models[J]. Res. Explor. Lab., 2007, 26: 189 | [30] | (郑飞, 何玉怀, 苏彬. 低周疲劳寿命预测模型分析[J]. 试验室研究与探索, 2007, 26: 189) | [31] | Chan K, Cheruvu S, Viswanathan R. Development of a thermal barrier coating life model[A]. ASME Turbo Expo2003, Collocated with the 2003 International Joint Power Generation Conference[C]. Atlanta, Georgia, USA: ASME, 2003: GT2003-38171. |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|