Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (1): 67-72    
  研究论文 本期目录 | 过刊浏览 |
2024--T3和2524--T34铝合金疲劳裂纹的萌生机制
李棠1, 陶俊林1, 王清远2
1.西南科技大学土木工程与建筑学院 绵阳 621000
2.四川大学力学科学工程系 成都 610065
The Mechanism of Fatigue Crack Initiation of 2024–T3 and 2524–T34 Aluminum Alloys
WANG Qingliang1,  SUN Yanmin1,  ZHANG Lei2
1.College of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang 621000
2.Department of Engineering Mechanics, Sichuan University, Chengdu 610065
引用本文:

李棠 陶俊林 王清远. 2024--T3和2524--T34铝合金疲劳裂纹的萌生机制[J]. 材料研究学报, 2011, 25(1): 67-72.
, , . The Mechanism of Fatigue Crack Initiation of 2024–T3 and 2524–T34 Aluminum Alloys[J]. Chin J Mater Res, 2011, 25(1): 67-72.

全文: PDF(898 KB)  
摘要: 通过2024--T3和新型2524--T34铝合金的疲劳实验和对试样表面及疲劳断口的观测, 研究了材料的微观结构和疲劳裂纹萌生机制。实验在室温下完成, 应力比为0.1、加载频率为15 Hz。结果表明: 实验材料呈现了再结晶的层状晶粒结构, 晶粒沿着轧制方向被拉长, 并较为平坦。2024铝合金中二相粒子的分布更为密集无序, 且粗大、不规则形状的二相粒子分布更多, 而2524铝合金中二相粒子多沿轧制方向呈带状分布。2524铝合金中的多数裂纹萌生于材料中含Fe的粗大的$\beta$相粒子, 并伴有少量的滑移带裂纹形核和材料缺陷裂纹形核等; 包铝层的滑移带形成的挤入挤出为2024和2524包铝合金的裂纹多处形核提供了主要位置。
关键词 材料科学基础学科  铝合金 二相粒子  疲劳裂纹  裂纹萌生    
Abstract:The microstructure and mechanism of fatigue crack initiation of 2024–T3 and 2524–T34 Al alloys were investigated. Four–point bending and tension –tension fatigue tests on the tested alloys with a frequency of 15 Hz, R=0.1 along the rolling direction were conducted at room temperature. It was found that the flat grain was elongated along the rolling direction, showing the laminar grain structure. The amount of coarse and irregular particles and the density of secondary particles  distributed in 2024 were much higher than that in 2524. Particles in 2524 distributed stripped along the rolling direction. The majority of fatigue cracks of 2524 were initiated on the coarse β phase second particle, containing Fe, a few of them formed on sites of material defects or slip bands. The intrusion and extrusion induced by slip band in the Al cladding layer provided principal fatigue crack initiation sites for 2024 and 2524 Al–cladding aluminum alloys.
Key wordsfoundational discipline in materials science     aluminum alloy     the second–phase particle    fatigue crack     fatigue crack initiation
收稿日期: 2010-06-11     
ZTFLH: 

TG111

 
基金资助:

国家杰出青年基金 10925211和西南科技大学博士基金08ZX0108资助项目。

1 A.Zabett, A.Plumtree, Microstructural effects on the small fatigue crack behavior of an aluminum alloy plate, Fatigue and Fract. of Engng. Mater. and Struc., 18, 8019(1995)

2 C.Q.Bowles, J.Schijve, The role of inclusions in fatigue crack initiation in an aluminum alloy, International J. of fatigue, 9, 171(1973)

3 J.C.Grosskreutz, G.G.Shaw, Critical Mechanisms in the Development of Fatigue Cracks in 2024–T4 Aluminum, 1968.

4 C.Y.Kung, M.E.Fine, Fatigue crack initiation and microcrack growth in 2024–T4 and 2124–T4 aluminum alloys, Metallurgical Transactions, 10(A), 603(1979)

5 E.A.DeBartolo, B.M.Hillberry, Characterization of fatigue crack nucleation sites in 2040–T3 aluminum alloy, Fatigue99; Proceedings of the Seventh International Fatigue Congress, (Beijing, China, 1999)

6 J.C.Newman, Fracture mechanics parameters for small fatigue cracks, In: Small Crack Test Methods, ASTM STP 1149,edited by J. M. Larsen and J.E.Allison (American Society

for Testing and Materials, Philadelphia, 1992) p.6–33

7 J.C.Newman, P.R.Edwards, Short–Crack Growth Behavior in an Aluminum Alloy–An AGARD Cooperative Test Programme, AGARD 732, Dec. 1988.

8 Ali Merati, A study of nucleation and fatigue behavior of an aerospace aluminum alloy 2024–T3, International Journal of Fatigue, 27, 33(2005)

9 T.S.Srivatsan, D.Kolar, P.Magnusen, The cyclic fatigue and final fracture behavior of aluminum alloy 2524, Materials and Design, 23, 129(2003)

10 T.S.Srivatsan, D.Kolar, P.Magnusen, Influence of temperature on cyclic stress response, strain resistance and fracture behavior of aluminum alloy 2524, Materials Science and Engng., A314, 118(2001)

11 P.J.Golden, A.F.Grandt Jr., G.H.Bray, A comparison of fatigue crack formation at holes in 2024–T3 and 2524–T3 aluminum alloy specimens, International J.of Fatigue, 21, 211(1999)

12 A.F.Grandt, D.G.Sexton Jr., P.J.Golden, A comparison of 2024–T3 and 2524–T3 aluminum alloys under multi–site damage scenarios, in: Proceedings of the 19th Symposium of the International Committee on Aeronautical Fatigue, edited by R.Cooke and P.Poole (Edinburgh. Scotland. 1997) p.659–669

13 T.Li, Z.G.Chen, High cycle fatigue properties of an 2524 Al alloy in four–point bend, in: Proceedings of ICHMM2008 (Huangshan, China, 2008)

14 T.Zhai, Y.G.Xu, J.W.Martin, A.J.Wilkinson, G.A.D.Briggs, A self–aligning four–point bend testing rig and sample geometry effect in four–point bend fatigue, Int. J. Fatigue, 21, 889(1999)

15 LI Tang, Investigation on fatigue behavior of 2000 series high strength aluminum alloys, Ph.D thesis, Sichuan University (2008)

(李棠, 2XXX系列高强铝合金疲劳行为的研究, 四川大学博士论文(2008))

16 Metals Handbook, 9th ed., Metallography and Microstructures, Vol.9 (Materials Park, OH: ASM Int., 1985) p.355–357

17 R.Hutchinson, S.P.Ringer, Metall. Mater. Trans. A, 31, 2731(2000)

18 L.M.Wang, H.M.Flower, T.C.Lindley, Precipitation of the Omega phase in 2024 and 2124 aluminum alloys, Scr. Mater., 41, 391(1999)

19 B.Q.Li, F.E.Wawner, Dislocation interaction with semicoherent precipitates (Ω phase) in deformed Al–Cu–Mg–Ag alloy, Acta Mater., 46, 5483(1998)

20 L.F.Mondolfo, Aluminum Alloys, Structure and Properties (Butterworths, Boston, 1976) p.842
[1] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] 孙艺, 韩同伟, 操淑敏, 骆梦雨. 氟化五边形石墨烯的拉伸性能[J]. 材料研究学报, 2022, 36(2): 147-151.
[4] 谢明玲, 张广安, 史鑫, 谭稀, 高晓平, 宋玉哲. Ti掺杂MoS2薄膜的抗氧化性和电学性能[J]. 材料研究学报, 2021, 35(1): 59-64.
[5] 岳颗, 刘建荣, 杨锐, 王清江. Ti65合金的初级蠕变和稳态蠕变[J]. 材料研究学报, 2020, 34(2): 151-160.
[6] 鲁效庆,张全德,魏淑贤. A-π-D-π-A型吲哚类染料敏化剂的光电特性[J]. 材料研究学报, 2020, 34(1): 50-56.
[7] 李学雄,徐东生,杨锐. 钛合金双态组织高温拉伸行为的晶体塑性有限元研究[J]. 材料研究学报, 2019, 33(4): 241-253.
[8] 刘庆生, 曾少军, 张丹城. 基于细观结构的阴极炭块钠膨胀应力数值分析及实验验证[J]. 材料研究学报, 2017, 31(9): 703-713.
[9] 马志军, 莽昌烨, 王俊策, 翁兴媛, 司力玮, 关智浩. 三种金属离子掺杂对纳米镍锌铁氧体吸波性能的影响[J]. 材料研究学报, 2017, 31(12): 909-917.
[10] 黄莉. 石蜡/水相变乳液的稳定性能和储能容量[J]. 材料研究学报, 2017, 31(10): 789-795.
[11] 朱良,王晶,李晓慧,锁红波,张亦良. 基于堆焊成形钛合金高周疲劳实验数据的R-S-N模型[J]. 材料研究学报, 2015, 29(9): 714-720.
[12] 陈杨,钱程,宋志棠,闵国全. 用AFM力曲线技术测定聚合物微球的压缩杨氏模量*[J]. 材料研究学报, 2014, 28(7): 509-514.
[13] 于桂琴,刘建军,梁永民. 胍盐离子液体的合成及其对钢/钢摩擦副的摩擦性能研究*[J]. 材料研究学报, 2014, 28(6): 448-454.
[14] 王效岗,李乐毅,王海澜,周存龙,黄庆学. 双金属复合板材辊式矫直的数值模型*[J]. 材料研究学报, 2014, 28(4): 308-313.
[15] 姚武,吴梦雪,魏永起. 三元复合胶凝体系中硅灰和粉煤灰反应程度的确定*[J]. 材料研究学报, 2014, 28(3): 197-203.