Please wait a minute...
材料研究学报  2008, Vol. 22 Issue (6): 589-592    
  研究论文 本期目录 | 过刊浏览 |
铁粉的高速压制成形
王建忠;曲选辉;尹海清;周晟宇
北京科技大学材料科学与工程学院~新金属材料国家重点实验室 北京 100083
High velocity compaction of ferrous powder
 WANG Jianzhong; QU Xuahui; YIN Haiqing; ZHOU Shengyu
State Key Laboratory for Advanced Metals and Materials; School of Materials Science & Engineering;
University of Science & Technology Beijing; Beijing 100083
引用本文:

王建忠 曲选辉 尹海清 周晟宇. 铁粉的高速压制成形[J]. 材料研究学报, 2008, 22(6): 589-592.
, , , . High velocity compaction of ferrous powder[J]. Chin J Mater Res, 2008, 22(6): 589-592.

全文: PDF(741 KB)  
摘要: 

采用高速压制技术制备铁基制品, 探讨了冲击能量及冲击速度与冲击行程之间的关系, 并研究了冲击能量、压制方式对生坯密度、最大冲击力、脱模力和径向弹性后效的影响. 结果表明: 在高速压制过程中, 冲击能量与冲击行程呈线性关系,而冲击速度与冲击行程呈抛物线关系. 生坯密度随着冲击能量的增加而逐渐增大.单次压制时, 当冲击能量增加到 6510 J时, 生坯密度达到7.336 g/cm3,其相对密度约为97%. 在总冲击能量相同的情况下, 两次压制制备出的试样生坯密度最大,三次压制的最小. 在高速压制过程中, 试样的脱模力及其径向弹性后效均远低于传统压制.

关键词 材料合成与加工工艺 粉末冶金 生坯密度 高速压制 冲击能量 脱模力    
Abstract

Ferrous parts were prepared through high velocity compaction (HVC), the relationship between the impact energy, the impact velocity and the stroke length was investigated. The effects of impact energy and compaction methods on the green density, the maximal impact force, the withdraw force and the radial springback were discussed. The results showed that the impact energy was direct proportional to the stroke length and the impact velocity is parabolic to it. The green density increased with the impact energy increasing. In single impact the green density was 7.336 g/cm3, relative density about 97%, when impact energy was 6510 J. For the same total impact energy the green density of specimen processed by double impacts was the best and that of specimen fabricated by triplex impacts was the lowest. The withdraw force and the radial springback of specimen produced by HVC were all lower than that of specimen processed by traditional compaction.

Key wordssynthesizing and processing technics    PM    green density    high velocity compaction    impact energy    withdraw force
收稿日期: 2008-01-08     
ZTFLH: 

TB44

 
基金资助:

国家973计划(2006CB605207);教育部长江学者和创新团队发展计划(I2P407)

1 F.Richard, HVC punches PM to new mass production limits, Metal Powder Report, 57(9), 26(2002)
2 R.L.Orban, New research directions in powder metallurgy, Romanian Reports in Physics, 56(3), 505(2004)
3 CHI Yue, GUO Shiju, MENG Fei, YANG Xia, ZHANG Heng, LIAN Yudong, High velocity compaction in powder metallurgy, Powder Metallurgy Industry, 15(6), 41(2005)
(迟悦, 果世驹, 孟飞, 杨霞, 张恒, 连玉栋,粉末冶金高速压制成形技术, 粉末冶金工业, 15(6), 41(2005))
4 SHEN Yuanxun, XIAO Zhiyu, WEN Liping, PAN Guoru, LI Yuanyuan, Principle, characteristics and status of high velocity compaction in powder metallurgy, Powder Metallurgy Industry, 16(3), 19(2006)
(沈元勋, 肖志瑜, 温利平, 藩国如, 李元元, 粉末冶金高速压制技术的原理、特点及其研究进展, 粉末冶金工业, 16(3), 19(2006))
5 ZHOU Shengyu, YIN Haiqing, QU Xuanhui, Research status of high velocity compaction technology in powder metallurgy, Materials Review, 21(7), 79(2007)
(周晟宇, 尹海清, 曲选辉, 粉末冶金高速压制技术的研究进展, 材料导报, 21(7), 79(2007))
6 P.Skoglund, in 2001 International conference on Power Transmission Components, High density PM components by high velocity compaction, edited by A.Volker, Chu Chiulung, F.William, J.Jandeska, (Ypsilanti, Metal Powder Industries Federation, 2001)p.16 
7 P.Skoglund, High density PM parts by high velocity compaction, Powder Metallurgy, 44(3), 199(2001)
8 P.Skoglund, in Advance in Powder Metallurgy & Particulate Materials-2002, High-Density PM Components by High Velocity Compaction, edited by A.Volker, Chu Chiulung, F.William, J.Jandeska, (New Jersey, Metal Powder Industries Federation, 2002) p.1 
9 E.Caroline, H¨ogan¨as promotes potential of high velocity compaction, Metal Powder Report, 56(9), 6(2001)
10 F.Dore, L.Lazzarotto, S.Bourdin, High velocity compaction: overview of materials, applications and potential, Materials Science Forum, 534-536, 293(2007)
11 E.Torsten, L.Ppetri, Residual stresses in green bodies of steel powder after conventional and high speed compaction, Materials Science Forum, 407(404), 77(2002)
12 B.Barendvanden, F.Christer, L.Tomas, Industrial implementation of high velocity compaction for improved properties, Powder Metallurgy, 49(2), 107(2006)
13 P.Jons′en, H-A.H¨aggblad, L.Troive, J.Furuberg, S.Allroth, P.Skoglund, Green body behavior of high velocity pressed metal powder, Materials Science Forum, 534-536, 289(2007)
14 C.Aslund, in Euro PM 2004 Conference Proceedings, High velocity compaction (HVC) of stainless steel gas atomized powder, edited by D.Herbert, R.Raimund, (Shrewsbury UK, EPMA, 2004) p.533 
15 A.Bruska, S.Bengt, K.Leif, Development of a high-velocity compaction process for polymer powders, Polymer Testing, 24(4), 909(2005)
16 D.Jauffr`es, O.Lame, G.Vigier, F.Dor′e, Microstructural origin of physical and mechanical properties of ultra high molecular weight polyethylene processed by high velocity compaction, Polymer, 48(21), 6374(2007)
17 HUANG Peiyun, Principles of Powder Metallurgy (Beijing, The press of Metallurgical Industry, 1997)p.170 
(黄培云, 粉末冶金原理, (北京, 冶金工业出版社, 1997) p.170)
18 WU Chengyi, ZHANG Liying, Mechanical principles of Powder Forming (Beijing, The press of Metallurgical Industry, 2003) p.6 
(吴成义, 张丽英, 粉末成形力学原理, (北京, 冶金工业出版社, 2003) p.6)

[1] 赵云梅, 赵洪泽, 吴杰, 田晓生, 徐磊. 热处理对粉末冶金Inconel 718合金TIG焊接的组织和性能的影响[J]. 材料研究学报, 2023, 37(3): 184-192.
[2] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.
[3] 周海涛, 侯湘武, 汪彦博, 肖旅, 袁勇, 孙京丽. Nb-TiAl合金的高温变形行为及其板材的性能[J]. 材料研究学报, 2022, 36(6): 471-480.
[4] 闫福照, 李静, 熊良银, 刘实. FeCr-ODS铁素体合金的氧化+粉锻工艺制备及其微观结构[J]. 材料研究学报, 2022, 36(6): 461-470.
[5] 宗意勋, 李树丰, 刘磊, 张鑫, 潘登, 吴代惠玉. GNP-Ni/Cu复合材料的界面调控和强化机理[J]. 材料研究学报, 2022, 36(10): 777-785.
[6] 王永鹏, 贾治豪, 刘梦竹. 二维CdO纳米棒的制备及其用于葡萄糖传感器的可行性[J]. 材料研究学报, 2021, 35(1): 53-58.
[7] 夏傲, 赵晨鹏, 曾啸雄, 韩曰鹏, 谈国强. B掺杂MnO2的制备及其电化学性能[J]. 材料研究学报, 2021, 35(1): 36-44.
[8] 蔡国栋, 程西云, 王典. FDM3D打印316L不锈钢试样和La对析出物形貌和分布的影响[J]. 材料研究学报, 2020, 34(8): 635-640.
[9] 谢礼兰, 杨冬升, 凌静. 高容量锂电池负极材料TiNb2O7的合成及其机理[J]. 材料研究学报, 2020, 34(5): 385-391.
[10] 贾建波,鹿超,杨志刚,董添添,顾勇飞,徐岩. 固溶+时效处理对粉末冶金Ti-22Al-25Nb合金显微硬度的影响[J]. 材料研究学报, 2020, 34(3): 198-208.
[11] 马炜杰,杨西荣,罗雷,刘晓燕,郝凤凤. 复合形变超细晶纯钛的动态再结晶模型[J]. 材料研究学报, 2020, 34(3): 217-224.
[12] 马晨,张鑫,潘登,郑飞洋,李树丰. 钛增强Cu40Zn黄铜合金的粉末冶金制备及其力学性能[J]. 材料研究学报, 2020, 34(2): 101-108.
[13] 姜巨福, 王迎, 肖冠菲, 邓腾, 刘英泽, 张颖. 变质细化和热处理对挤压铸造成形A356铝合金构件性能的影响[J]. 材料研究学报, 2020, 34(12): 881-891.
[14] 杨占鑫, 吴琼, 任奕桥, 屈凯凯, 张哲豪, 仲为礼, 范广宁, 齐国超. 宏量制备层状Ti3C2及其超级电容的性能[J]. 材料研究学报, 2020, 34(11): 861-867.
[15] 杨军,张家敏,马文瑾,杜立辉,易健宏,甘国友,游昕,李凤仙. 烧结温度对TC4合金的微观结构和力学性能的影响[J]. 材料研究学报, 2019, 33(5): 338-344.