Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (11): 813-823    DOI: 10.11901/1005.3093.2025.199
  研究论文 本期目录 | 过刊浏览 |
Cu对搅拌摩擦加工高锌镁合金性能的影响
戴衡霞1, 董旭光1(), 薛鹏1,2, 倪丁瑞2, 马宗义1,2
1.沈阳理工大学材料科学与工程学院 沈阳 110159
2.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Effect of Cu Content on Properties of Friction Stir Processed Mg-8Zn-xCu Alloys
DAI Hengxia1, DONG Xuguang1(), XUE Peng1,2, NI Dingrui2, Ma Zongyi1,2
1.School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

戴衡霞, 董旭光, 薛鹏, 倪丁瑞, 马宗义. Cu对搅拌摩擦加工高锌镁合金性能的影响[J]. 材料研究学报, 2025, 39(11): 813-823.
Hengxia DAI, Xuguang DONG, Peng XUE, Dingrui NI, Zongyi Ma. Effect of Cu Content on Properties of Friction Stir Processed Mg-8Zn-xCu Alloys[J]. Chinese Journal of Materials Research, 2025, 39(11): 813-823.

全文: PDF(28691 KB)   HTML
摘要: 

用搅拌摩擦加工(FSP)技术制备3种不同Cu含量的Mg-8Zn-xCu合金 (x = 0, 0.5, 1, 质量分数,%)并使用差热分析法和背散射电子成像等手段对其表征,研究了Cu含量对其性能的影响。结果表明,随着Cu含量的提高Mg-8Zn合金的凝固共晶相由346 ℃低熔点二元共晶向434 ℃高熔点三元共晶转变,主要共晶化合物由Mg7Zn3相转变为MgZnCu相,共晶温度的提高抑制了FSP过程中的共晶熔化开裂。Cu含量为0.5%的合金,搅拌摩擦热-力耦合作用使加工区中大部分粗大第二相固溶于镁基体,使Zn元素的固溶量高达6.62% (质量分数),约为室温平衡固溶度的4倍。与FSP Mg-8Zn 合金相比,FSP Mg-8Zn-0.5Cu合金的抗拉强度(提高50 MPa)达到 了300 MPa,断裂伸长率从13.4%显著提高到30.2%。产生这一优异的强韧化效果的原因是组织均匀性的提高、高含量Zn的固溶强化、晶粒细化以及MgZn2动态沉淀相的协同作用。Cu含量提高到1%使未固溶的第二相在加工区呈带状偏聚,导致合金的拉伸性能显著降低。

关键词 金属材料高锌镁合金搅拌摩擦加工热裂共晶固溶    
Abstract

Three Mg-8Zn-xCu (x = 0, 0.5 and 1, mass fraction, %) alloys were prepared by friction stir processing (FSP). Meanwhile, the influence of Cu content on the formability and mechanical properties of FSP Mg-8Zn alloys at high rotation rate was investigated by differential thermal analysis (DTA) and backscattered electron (BSE) etc. It was found that with the increasing Cu content, the eutectic in the Mg-8Zn-xCu alloys was transformed from a low-melting-point binary eutectic (346 °C) to a high-melting-point ternary eutectic (434 °C) during solidification process. The predominant eutectic phase was evolved from the Mg7Zn3 to the MgZnCu phase. The elevated eutectic temperature effectively suppressed the liquation (i.e., liquid formation) and liquation-induced cracking during FSP. By a Cu content of 0.5%, most of the secondary phases were dissolved into the Mg matrix via the thermo-mechanical coupling effect of FSP. This resulted in a super high Zn solid solution content of 6.62% (mass fraction) in Mg matrix, approximately 4 times of the room-temperature equilibrium solubility. Compared with the FSP Mg-8Zn alloy, the FSP Mg-8Zn-0.5Cu alloy exhibits a 50 MPa increase in tensile strength, achieving 300 MPa, and the elongation to fracture significantly increases from 13.4% to 30.2%. It is the improvement of microstructural uniformity that leads to a simultaneous enhancement of strength and ductility, supplemented by the synergistic action of high-content Zn solid solution strengthening, grain refinement, and MgZn2 dynamic precipitation strengthening. As the Cu content was increased to 1%, stripe-like particle clusters formed within the processing zone due to the undissolved secondary phases, leading to a significant degradation in tensile properties.

Key wordsmetallic materials    high-zinc magnesium alloy    friction stir processing    liquation-induced cracking    eutectic    solid solution
收稿日期: 2025-06-10     
ZTFLH:  TG146.22  
基金资助:国家自然科学基金(52071317);沈阳市U40杰出青年基金(RC230864)
通讯作者: 董旭光,副教授,xgdong@sylu.edu.cn,研究方向为轻合金设计及先进制备技术
Corresponding author: DONG Xuguang, Tel: 13555804884, E-mail: xgdong@sylu.edu.cn
作者简介: 戴衡霞,女,2000年生,硕士
Element

Eutectic

temperature / oC

Eutectic reactionMaximum solid solubility / (mass fraction, %)Room-temperature solubility / (mass fraction, %)
Zn340L → Mg + MgZn/Mg7Zn36.21.7
Al437L → Mg + Mg17Al1217.42.5
Ca516L → Mg + Mg2Ca1.350.8
Nd548L → Mg + Mg41Nd53.60.2
Sn561L → Mg + Mg2Sn3.350.1
Y567L → Mg + Mg24Y512.53.4
Ce592L → Mg + Mg12Ce0.80.05
Li588L → Mg + β-Li (BCC)5.55.5
La613L → Mg + Mg12La0.80.2
Si638L → Mg + Mg2SiNegligibleNegligible
Mn6493.40.2
表1  镁基二元合金的共晶特性和固溶度参数
图1  铸态组织的SEM形貌
图2  Mg-Zn二元合金的相图[17]和共晶点[Mg-51.3Zn,613 K (340 ℃)]附近的局部放大图[19]
图3  铸态合金的差热分析
图4  FSP样品的表面形貌图
图5  FSP Mg-8Zn合金的横截面组织形貌
图6  FSP Mg-8Zn-xCu合金加工区的横截面组织形貌
图7  Mg-8Zn-0.5Cu合金的EBSD微观组织
图8  Mg-8Zn和Cu改性合金的XRD谱
图9  FSP Mg-8Zn-0.5Cu合金中纳米析出相的形貌(电子束平行于<112¯0> α )
图10  FSP Mg-8Zn-xCu合金横截面硬度的分布
图11  FSP Mg-8Zn-xCu合金的工程应力-应变曲线和FSP Mg-Zn合金力学性能[23~30]
图12  FSP Mg-8Zn-xCu合金断口的形貌
[1] Wu G H, Chen Y S, Ding W J. Current research, application and future prospect of magnesium alloys in aerospace industry [J]. Manned Spaceflight, 2016, 22: 281
[1] 吴国华, 陈玉狮, 丁文江. 镁合金在航空航天领域研究应用现状与展望 [J]. 载人航天, 2016, 22: 281
[2] Weiler J P. A review of magnesium die-castings for closure applications [J]. J. Magnes. Alloy., 2019, 7: 297
[3] Shen Q Y, Ba Y X, Zhang P, et al. Recent progress in the research on magnesium and magnesium alloy foils: A short review [J]. Int. J. Miner. Metall. Mater., 2024, 31: 842
[4] Zhang Q H, Huang W G, Zheng T Q, et al. Influence of heat treatment on mechanical properties of Mg-Zn-Al alloy [J]. Hot Work. Technol., 2007, 36(8): 62
[4] 张青辉, 黄维刚, 郑天群 等. 热处理对Mg-Zn-Al合金力学性能的影响 [J]. 热加工工艺, 2007, 36(8): 62
[5] Fan Z B, Lin X P, Dong Y, et al. Age-hardening response for Mg96.17Zn3.15Y0.5Zr0.18 solid solution alloy under high pressure [J]. Acta Metall. Sin., 2016, 52: 1491
[5] 樊志斌, 林小娉, 董 允 等. Mg96.17Zn3.15Y0.5Zr0.18合金高压下固溶处理时效硬化研究 [J]. 金属学报, 2016, 52: 1491
[6] Nie J F. Precipitation and hardening in magnesium alloys [J]. Metall. Mater. Trans., 2012, 43A: 3891
[7] Liu B, Yang J, Zhang X Y, et al. Development and application of magnesium alloy parts for automotive OEMs: A review [J]. J. Magnes. Alloy., 2023, 11: 15
[8] Ma Z Y. Friction stir processing technology: A review [J]. Metall. Mater. Trans., 2008, 39A: 642
[9] Feng A H, Ma Z Y. Enhanced mechanical properties of Mg-Al-Zn cast alloy via friction stir processing [J]. Scr. Mater., 2007, 56: 397
[10] Palanivel S, Arora A, Doherty K J, et al. A framework for shear driven dissolution of thermally stable particles during friction stir welding and processing [J]. Mater. Sci. Eng., 2016, 678A: 308
[11] Yadav D, Bauri R, Chawake N. Fabrication of Al-Zn solid solution via friction stir processing [J]. Mater. Charact., 2018, 136: 221
[12] Wagner D C, Chai X, Tang X, et al. Liquation cracking in arc and friction-stir welding of Mg-Zn alloys [J]. Metall. Mater. Trans., 2015, 46A: 315
[13] Yang H, Xie W L, Song J F, et al. Current progress of research on heat-resistant Mg alloys: A review [J]. Int. J. Miner. Metall. Mater., 2024, 31: 1406
[14] Wang Y B, Huang Y X, Meng X C, et al. Microstructural evolution and mechanical properties of Mg-Zn-Y-Zr alloy during friction stir processing [J]. J. Alloy. Compd., 2017, 696: 875
[15] Zhou Y, Li S L, Mao P L, et al. Effect of copper addition on precipitation behaviors and mechanical properties of Mg-Zn-Cu alloys with respect to high zinc [J]. J. Magnes. Alloy., 2024, 12: 5194
[16] Chen Y F. Study on the strengthening mechanism of high abundance Rare-Earth elements Ce and Y in magnesium alloys [D]. Nanchang: Nanchang University, 2023
[16] 陈燕飞. 高丰度稀土元素Ce和Y对镁合金的强化机制研究 [D]. 南昌: 南昌大学, 2023
[17] Massalski T B. Binary Alloy Phase Diagrams [M]. Metals Park, OH: American Society for Metals, 1986
[18] Gao X, Nie J F. Structure and thermal stability of primary intermetallic particles in an Mg-Zn casting alloy [J]. Scr. Mater., 2007, 57: 655
[19] Clark J B, Abdyr L, Moser L. Mg-Zn (Magnesium-Zinc) Binary Alloy Phase Diagrams [A]. Binary Alloy Phase Diagrams (3 Volume Set) [C]. Metals Park, OH: American Society for Metals, 1990
[20] De Cicco M, Konishi H, Cao G P, et al. Strong, ductile magnesium-zinc nanocomposites [J]. Metall. Mater. Trans., 2009, 40A: 3038
[21] Gerlich A P, Shibayanagi T. Liquid film formation and cracking during friction stir welding [J]. Sci. Technol. Weld. Join., 2011, 16: 295
[22] Fu X S, Chen K, Zhang Q S, et al. Interfacial intermetallic compound layer in friction stir welded Mg/Al joints: Relationship between thickness and the welding temperature history [J]. J. Magnes. Alloy., 2025, 13: 2540
[23] Li J C, Huang Y X, Wang F F, et al. Enhanced strength and ductility of friction-stir-processed Mg-6Zn alloys via Y and Zr co-alloying [J]. Mater. Sci. Eng., 2020, 773A: 138877
[24] Wang H, Zhang D T, Cao G H, et al. Improving room-temperature ductility of a Mg-Zn-Ca alloy through friction stir processing [J]. J. Mater. Res. Technol., 2022, 17: 1176
[25] Elyasi M, Razaghian A, Moharami A, et al. Effect of zirconium micro-addition and multi-pass friction stir processing on microstructure and tensile properties of Mg-Zn-Si alloys [J]. J. Mater. Res. Technol., 2022, 20: 4269
[26] Elyasi M, Razaghian A, Moharami A, et al. Effects of multi-pass friction stir processing on mechanical and tribological properties of Mg-Zn-Zr alloys [J]. J. Mater. Res. Technol., 2023, 24: 4730
[27] Wang J, Fu R D, Hu T X, et al. Improvement of microstructures and mechanical properties of Mg-3Zn-0.5Zr by friction stir processing [J]. Mater. Sci. Eng., 2024, 897A: 146318
[28] Vargas M, Lathabai S, Uggowitzer P J, et al. Microstructure, crystallographic texture and mechanical behaviour of friction stir processed Mg-Zn-Ca-Zr alloy ZKX50 [J]. Mater. Sci. Eng., 2017, 685A: 253
[29] Yang Q, Feng A H, Xiao B L, et al. Influence of texture on superplastic behavior of friction stir processed ZK60 magnesium alloy [J]. Mater. Sci. Eng., 2012, 556A: 671
[30] Long F, Chen G Q, Zhou M R, et al. Simultaneous enhancement of mechanical properties and corrosion resistance of as-cast Mg-5Zn via microstructural modification by friction stir processing [J]. J. Magnes. Alloy., 2023, 11(6): 1931
[1] 杨景清, 董文超, 陆善平. δ-铁素体含量对高SiN奥氏体不锈钢焊缝性能的影响[J]. 材料研究学报, 2025, 39(9): 641-649.
[2] 詹杰, 陈小江, 邹之利, 苏兴东, 谢世宇, 江亮, 王金铃, 王烈林. 纳米Ag0@ACF材料的制备及其对气态碘的吸附性能[J]. 材料研究学报, 2025, 39(9): 673-682.
[3] 颉芳霞, 吴光庆, 张世文, 卢泽异, 牟彦铭, 何雪明. 7075-TiB2 复合材料的制备和性能[J]. 材料研究学报, 2025, 39(9): 683-693.
[4] 施渊吉, 程诚, 张海涛, 胡道春, 陈晶晶, 黎军顽. β-SiC半导体器件在滑动摩擦中材料去除行为的纳观分析[J]. 材料研究学报, 2025, 39(9): 701-711.
[5] 周影影, 张瑛嫺, 淡卓娅, 杜旭, 杜浩楠, 甄恩远, 罗发. 掺杂LaYFeO3 陶瓷吸波性能的影响[J]. 材料研究学报, 2025, 39(8): 561-568.
[6] 王铭宇, 李述军, 和正华, 唐明德, 张思倩, 张浩宇, 周舸, 陈立佳. 激光功率和扫描速度对SLM制备Ti5553合金性能的影响[J]. 材料研究学报, 2025, 39(8): 583-591.
[7] 耿瑞文, 杨志豇, 杨蔚华, 谢启明, 游津京, 李立军, 吴海华. 6H-SiC纳米磨削亚表面损伤机理的分子动力学研究[J]. 材料研究学报, 2025, 39(8): 603-611.
[8] 陆通, 王亚娜, 张超, 雷芃, 张鸿荣, 黄光伟, 郑立允. BN掺杂对热变形钕铁硼磁体性能的影响[J]. 材料研究学报, 2025, 39(8): 612-618.
[9] 张伟, 张兵, 周军, 刘跃, 王旭峰, 杨锋, 张海芹. 冷轧 Q 值对TA18管材塑性变形织构演变的影响[J]. 材料研究学报, 2025, 39(8): 619-631.
[10] 谭德新, 陈诗慧, 罗小丽, 宁小媚, 王艳丽. 富缺陷Pd纳米片的合成和对甘油的电催化氧化性能[J]. 材料研究学报, 2025, 39(8): 632-640.
[11] 张宁, 王耀奇, 杨毅, 慕延宏, 李震, 陈志勇. Ti65钛合金的超塑变形和微观组织演变[J]. 材料研究学报, 2025, 39(7): 489-498.
[12] 刘晶, 李云杰, 秦煜, 李琳琳. GCr15轴承钢中渗碳体粒径的调控对其硬度的影响[J]. 材料研究学报, 2025, 39(7): 521-532.
[13] 韩杨燚, 张腾昊, 张可, 赵时雨, 汪创伟, 余强, 李景辉, 孙新军. 终冷温度对Ti-V-Mo复合微合金钢析出相、组织和硬度的影响[J]. 材料研究学报, 2025, 39(7): 533-541.
[14] 刘志华, 王明月, 李易娟, 丘一帆, 李翔, 苏伟钊. 1T/2H O-MoS2@S-pCN催化剂的制备和性能[J]. 材料研究学报, 2025, 39(7): 551-560.
[15] 杨亮, 揣荣岩, 薛丹, 刘芳, 刘昆霖, 刘畅, 蔡桂喜. SUS301L不锈钢电阻点焊接头的微观组织和力学性能研究[J]. 材料研究学报, 2025, 39(6): 435-442.