Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (11): 845-860    DOI: 10.11901/1005.3093.2025.104
  研究论文 本期目录 | 过刊浏览 |
预热对690 MPaHSLA钢对接接头力学性能的影响
汤忖江1,2(), 安同邦2(), 彭云2, 马成勇2, 林纯丞2,3, 石照夏4, 秦哲1
1.鞍钢集团北京研究院有限公司 北京 102200
2.钢铁研究总院有限公司 北京 100081
3.北京化工大学机电工程学院 北京 100029
4.北京钢研高纳科技股份有限公司 北京 100081
Effect of Preheating on Microstructure and Mechanical Properties of Butt Joint of 690 MPa Grade HSLA Steel
TANG Cunjiang1,2(), AN Tongbang2(), PENG Yun2, MA Chengyong2, LIN Chuncheng2,3, SHI Zhaoxia4, QIN Zhe1
1.Ansteel Beijing Research Institute Co. , Ltd. , Beijing 102200, China
2.Central Iron and Steel Research Institute Co. , Ltd. , Beijing 100081, China
3.College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
4.Gaona Areo Materials Co. , Ltd. , Beijing 100081, China
引用本文:

汤忖江, 安同邦, 彭云, 马成勇, 林纯丞, 石照夏, 秦哲. 预热对690 MPaHSLA钢对接接头力学性能的影响[J]. 材料研究学报, 2025, 39(11): 845-860.
Cunjiang TANG, Tongbang AN, Yun PENG, Chengyong MA, Chuncheng LIN, Zhaoxia SHI, Zhe QIN. Effect of Preheating on Microstructure and Mechanical Properties of Butt Joint of 690 MPa Grade HSLA Steel[J]. Chinese Journal of Materials Research, 2025, 39(11): 845-860.

全文: PDF(40564 KB)   HTML
摘要: 

为满足实际工程应用需求,使用自主研制直径4.0 mm的焊条焊接厚度为27 mm的690 MPa级HSLA钢对接接头,研究了不预热(-1 ℃)和低温(66 ℃)预热焊接对焊缝金属的显微组织和力学性能的影响及强韧化机制。结果表明,预热温度对对接接头的显微组织和强韧性有显著的影响。与不预热焊接相比,低预热焊接焊缝金属的强度稍有降低,对接接头的强度变化较小,焊缝中心和熔合线的-50 ℃冲击功(KV2)变化较大,热影响区的变化较小。低预热焊接的对接接头冷速较低,促进了焊缝金属和熔合区中塑性良好的针状铁素体的生成和贝氏体板条结构的退化,并生成了尺寸较大、数量较多的马氏体-奥氏体(M-A)组元。与不预热焊接相比,低预热焊接的焊缝金属冲击功较高,与针状铁素体塑性、M-A组元与针状铁素体界面结合强度的改善相关。熔合线冲击功较低,与异常长大的针状铁素体、大尺寸M-A组元较密集分布相关。M-A组元与针状铁素体界面结合强度的改善主要与焊缝金属的超低碳含量相关。低预热焊接的对接接头强韧性匹配良好,其抗拉强度平均值为827 MPa,焊缝中心、熔合线和热影响区(熔合线外2 mm)的-50 ℃冲击功平均值分别为99、98和260 J。

关键词 金属材料690 MPa级HSLA钢对接接头预热强韧化机理    
Abstract

In order to satisfy the need of practical engineering application, 690 MPa HSLA steel butt joints with 27 mm in thickness were welded by independently developed electrodes with 4.0 mm in diameter. The effects of non-preheating (-1 oC) and low preheating temperature (66 oC) welding on microstructures and mechanical properties of butt joints were studied and the mechanisms of strength-toughness were revealed. The results showed that preheating temperature had significant effects on microstructures and mechanical properties of butt joints. By comparison of non-preheating welding, the strength of weld metal slightly decreased while that of butt joints changed within a small range, the impact toughness at -50 oC (KV2) of weld center and fusion line changed obviously while that of the heat affected zone (HAZ) changed slightly. Cooling rate of the butt joint was lower in low preheating temperature welding compared with that without preheating, which promoted the formation of acicular ferrite with excellent plasticity and the degeneration of lath bainite in weld metal and fusion zone. Meanwhile, the M-A with larger size and higher quantity were formed. Comparing with the non-preheating welding, the higher impact toughness of weld metal for low-preheating temperature welding was correlated with the improvements of plasticity of acicular ferrite and interface bonding strength of M-A and acicular ferrite. Meanwhile, the lower impact toughness of the fusion line was correlated with the abnormal growth of acicular ferrite and dense distribution of M-A with larger size. Meanwhile, the improvement of M-A and acicular ferrite interface bonding strength was correlated with ultra-low carbon design of weld metal. Butt joint with excellent strength-toughness properties was obtained in the conditions of low-preheating temperature welding. Mean value of tensile strength of butt joint was 827 MPa, the average -50 oC impact toughness of weld center, fusion line, and HAZ (2 mm outside of fusion line) were 99, 98,and 260 J, respectively.

Key wordsmetallic materials    690 MPa grade HSLA steel    butt joint    preheating    mechanisms of strength-toughness properties
收稿日期: 2025-03-11     
ZTFLH:  TG 442  
通讯作者: 汤忖江,高级工程师,tangcunjiang@163.com,研究方向为先进高性能钢铁材料,焊接材料及工艺安同邦,高级工程师,anran30002000@sina.com,研究方向为低合金高强钢焊接性及焊接材料
Corresponding author: TANG Cunjiang, Tel: 15801547450, E-mail: tangcunjiang@163.comAN Tongbang, Tel: 18101309982, E-mail: anran30002000@sina.com
作者简介: 汤忖江,1984年生,博士
Type

Preheating temperature

/ oC

Environmental temperature

/ oC

Interpass temperature / oC

Current

/ A

Voltage

/ V

Welding speed

/ cm·min-1

Heat input

/ kJ·cm-1

Measured valueMean valueMeasured valueMean valueMeasured valueMean value
Non-preheating butt joint-1102-117108164-16724-2814-181614-1816
Low preheating temperature butt joint6619100-118110159-16423-2814-191513-1816
Deposited metal13-16101-118111-114165-16824-2813-211512-2117
表1  对接接头和熔敷金属焊接工艺参数
图1  对接接头力学性能取样和检测位置以及冲击试样观察位置
图2  预热对对接接头力学性能的影响
图3  预热对对接接头硬度分布和平均硬度的影响
图4  不预热和低预热对接接头的微观组织形貌的OM像
图5  不预热对接接头中M-A组元的OM像
图6  不预热和低预热对接接头焊缝金属、熔合区和粗晶热影响区微观组织的SEM像
图7  不预热和低预热对接接头焊缝金属和熔合区中M-A组元SEM像
图8  不预热和低预热对接接头冲击断口中心的SEM像
图9  冲击断口侧面观察区域及不预热和低预热焊缝金属冲击断口侧面的SEM像
图10  不预热焊缝金属冲击断口中微孔及主裂纹的SEM像
图11  低预热对接接头冲击断口中微孔及主裂纹的SEM像
[1] Li Z X, Su X H, Li H, et al. Research progress on microstructure and coalesced bainite of welded deposited metal to high-strength steel with tensile strength above 690 MPa [J]. Mater. China, 2019, 38(12): 1169
[1] 栗卓新, 苏小虎, 李 红 等. 690 MPa级以上高强钢焊接熔敷金属微观组织及其联合贝氏体的研究进展 [J]. 中国材料进展, 2019, 38(12): 1169
[2] Liu Z Y, Chen J, Tang S, et al. State of the art development of the manufacturing technologies of new generation war ship steels [J]. Mater. China, 2014, 33(9-10): 595
[2] 刘振宇, 陈 俊, 唐 帅 等. 新一代舰船用钢制备技术的现状与发展展望 [J]. 中国材料进展, 2014, 33(9-10): 595
[3] Peng Y, Song L, Zhao L, et al. Research status of weldability of advanced steel [J]. Acta Metall. Sin., 2020, 56(4): 601
[3] 彭 云, 宋 亮, 赵 琳 等. 先进钢铁材料焊接性研究进展 [J]. 金属学报, 2020, 56(4): 601
[4] Banerjee K, Chatterjee U K. Effect of microstructure on hydrogen embrittlement of weld-simulated HSLA-80 and HSLA-100 steels [J]. Metall. Mater. Trans., 2003, 34A: 1297
[5] Joyce J A, Link R E, Roe C, et al. Dynamic and static characterization of compact crack arrest tests of navy and nuclear steels [J]. Eng. Fract. Mech., 2010, 77(2): 337
[6] Wang X J. Approach to development of marine high strength structural steels weldable at low preheating temperature [J]. Dev. Appl. Mater., 1997, 12(4): 22
[6] 王献钧. 低预热焊接高强度舰船结构钢的发展途径 [J]. 材料开发与应用, 1997, 12(4): 22
[7] Dhua S K, Mukerjee D, Sarma D S. Weldability and microstructural aspects of shielded metal arc welded HSLA-100 steel plates [J]. ISIJ Int., 2002, 42(3): 290
[8] Lis A K, Lis J, Jeziorski L. Advanced ultra-low carbon bainitic steels with high toughness [J]. J. Mater. Process. Technol., 1997, 64(1-3): 255
[9] Wang R F, Zhao C Q, Jiang Y, et al. United States marine evolution and analysis of plate specifications [J]. Dev. Appl. Mater., 2012, 27(4): 80
[9] 王任甫, 赵彩琴, 蒋 颖 等. 美国舰船用钢板规范的演变与分析 [J]. 材料开发与应用, 2012, 27(4): 80
[10] Christein J P, Warren J L. Implementation of HSLA-100 steel in aircraft carrier construction-CVN 74 [J]. J. Ship Prod., 1995, 11(2): 97
[11] Park M J, Lee H W. Effect of preheating on weldability and corrosion resistance in 690 MPa grade quenched and tempered steel weld metals [J]. Korean J. Met. Mater., 2014, 52(12): 983
[12] Shin Y T, Jo Y J. Evaluation on reheat cracking of multi-pass weld metal of YP 690 QT steel [J]. Korean J. Met. Mater., 2018, 56(8): 580
[13] Elmozoge I K, Ateeg M M, Blackman S A. Effect of interpass temperature on mechanical properties of P-GMAW on X100 pipeline steel [J]. J. Eng. Res., 2006, (5): 16
[14] Peng Y, Wang A H, Xiao H J, et al. Effect of interpass temperature on microstructure and mechanical properties of weld metal of 690 MPa HSLA steel [J]. Mater. Sci. Forum, 2012, 706-709: 2246
[15] Zhang L, Li Y J, Wang J A, et al. Effect of acicular ferrite on cracking sensibility in the weld metal of Q690 + Q550 high strength steels [J]. ISIJ Int., 2011, 51(7): 1132
[16] Wei J S. Progress of non-preheating welding technique of high-strength steel for hull construction [J]. Dev. Appl. Mater., 2002, 17(1): 37
[16] 魏金山. 船用高强钢不预热焊接技术研究进展 [J]. 材料开发与应用, 2002, 17(1): 37
[17] Dixon B, Hakansson K. Effects of welding parameters on weld zone toughness and hardness in 690 MPa steel [J]. Weld. J., 1995, 74(4): S122
[18] Alexandrov B, Theis K, Streitenberger M, et al. Cold cracking in weldments of steel S 690 QT [J]. Weld. World, 2005, 49(5-6): 64
[19] Dong G B, Pan G X, Gu Y, et al. Non-preheating welding technology of 690 MPa high strength steel for coal mine machinery [J]. Baosteel Technol., 2024, (2): 30
[19] 董贵斌, 潘高祥, 顾 晔 等. 煤矿机械用690 MPa级高强钢不预热焊接技术 [J]. 宝钢技术, 2024, (2): 30
[20] Yang J, He H, Zhang Y W, et al. Development of 80 kg class high strength steel of non-preheat welding at low temperature [J]. Spec. Steel, 2021, 42(5): 36
[20] 杨 俊, 何 航, 张勇伟 等. 80 kg级低温不预热焊接高强钢的开发 [J]. 特殊钢, 2021, 42(5): 36
[21] Zhou W H. Non-preheated welding test of Q690qNH high strength and toughness atmospheric corrosion resisting steel for bridge [J]. Met. Mater. Metall. Eng., 2022, (2): 59
[21] 周文浩. 高强韧耐候桥梁钢Q690qNH的不预热焊接试验 [J]. 金属材料与冶金工程, 2022, (2): 59
[22] Han Z X, Duan Q C, Sun M C, et al. Study on crack resistance and microstructure analysis of Q690D quenched and tempered high strength steel [J]. Coal Mine Mach., 2019, 40(6): 91
[22] 韩振仙, 段青辰, 孙满春 等. Q690D调质高强钢抗裂性研究及显微组织分析 [J]. 煤矿机械, 2019, 40(6): 91
[23] Peng N Q, Fu G Q, Yang J H, et al. Microstructures and properties of heat affected zone for Q690q weathering bridge steel without preheating welding [J]. Iron Steel., 2022, 57(12): 152
[23] 彭宁琦, 付贵勤, 杨建华 等. Q690q耐候桥梁钢免预热焊接热影响区的组织性能 [J]. 钢铁, 2022, 57(12): 152
[24] Devaney R J. Process-structure-property characterisation of plasticity and fatigue damage in X100 welded joints for steel catenary risers [D]. Galway: NUI Galway, 2020
[25] Strötgen D, Gourment A, Hojda R. Welding performance of high strength X100Q/S690QLHHO seamless pipes without preheating for offshore structural applications [A]. Proceedings of the 31st International Ocean and Polar Engineering Conference [C]. Rhodes, Greece: ISOPE, 2021
[26] Li X D, Shang C J, Ma X P, et al. Elemental distribution in the martensite-austenite constituent in intercritically reheated coarse-grained heat-affected zone of a high-strength pipeline steel [J]. Scr. Mater., 2017, 139: 67
[27] Yang H S, Bhadeshia H K D H. Austenite grain size and the martensite-start temperature [J]. Scr. Mater., 2009, 60(7): 493
[28] Li X D, Ma X P, Subramanian S V, et al. Structure-property-fracture mechanism correlation in heat-affected zone of X100 ferrite-bainite pipeline steel [J]. Metall. Mater. Trans., 2015, 2E: 1
[29] Jiang Q L, Li Y J, Wang J, et al. Effects of inclusions on formation of acicular ferrite and propagation of crack in high strength low alloy steel weld metal [J]. Mater. Sci. Technol., 2011, 27(10): 1565
[30] Zou Z D, Li Y J. Fine microstructure in fusion zone of HQ130 high strength steel [J]. Trans. China Weld. Inst., 1999, 20(3): 181
[30] 邹增大, 李亚江. HQ130高强钢焊接熔合区的精细组织特征 [J]. 焊接学报, 1999, 20(3): 181
[31] Li B, Zhao Y Z, Shi Y W, et al. Microstructure and fine structure in fusion zone of welded joint for high strength fine grain steel [J]. J. Iron Steel Res., 2003, 15(5): 35
[31] 李 擘, 赵玉珍, 史耀武 等. 高强度细晶粒碳素钢焊接接头熔合区附近的显微组织及精细结构 [J]. 钢铁研究学报, 2003, 15(5): 35
[32] Yao C W. The development of submerged arc welding material for X80 pipeline steel [D]. Xi'an: Xi'an University of Technology, 2006
[32] 姚成武. X80管线钢用埋弧焊接材料的研制 [D]. 西安: 西安理工大学, 2006
[33] Keehan E, Karlsson L, Andrén H O, et al. Influence of carbon, manganese and nickel on microstructure and properties of strong steel weld metals: part 3-increased strength resulting from carbon additions [J]. Sci. Technol. Weld. Joining, 2006, 11(1):19
[34] Peng X N, Peng Y, Tian Z L, et al. Effect of Ni on the microstructure evolution of Cr-Ni-Mo series high strength weld metal [J]. Trans. China Weld. Inst., 2014, 35(9): 32
[34] 彭杏娜, 彭 云, 田志凌 等. Ni元素对Cr-Ni-Mo系高强焊缝组织演化的影响 [J]. 焊接学报, 2014, 35(9): 32
[1] 杨景清, 董文超, 陆善平. δ-铁素体含量对高SiN奥氏体不锈钢焊缝性能的影响[J]. 材料研究学报, 2025, 39(9): 641-649.
[2] 詹杰, 陈小江, 邹之利, 苏兴东, 谢世宇, 江亮, 王金铃, 王烈林. 纳米Ag0@ACF材料的制备及其对气态碘的吸附性能[J]. 材料研究学报, 2025, 39(9): 673-682.
[3] 施渊吉, 程诚, 张海涛, 胡道春, 陈晶晶, 黎军顽. β-SiC半导体器件在滑动摩擦中材料去除行为的纳观分析[J]. 材料研究学报, 2025, 39(9): 701-711.
[4] 周影影, 张瑛嫺, 淡卓娅, 杜旭, 杜浩楠, 甄恩远, 罗发. 掺杂LaYFeO3 陶瓷吸波性能的影响[J]. 材料研究学报, 2025, 39(8): 561-568.
[5] 王铭宇, 李述军, 和正华, 唐明德, 张思倩, 张浩宇, 周舸, 陈立佳. 激光功率和扫描速度对SLM制备Ti5553合金性能的影响[J]. 材料研究学报, 2025, 39(8): 583-591.
[6] 耿瑞文, 杨志豇, 杨蔚华, 谢启明, 游津京, 李立军, 吴海华. 6H-SiC纳米磨削亚表面损伤机理的分子动力学研究[J]. 材料研究学报, 2025, 39(8): 603-611.
[7] 陆通, 王亚娜, 张超, 雷芃, 张鸿荣, 黄光伟, 郑立允. BN掺杂对热变形钕铁硼磁体性能的影响[J]. 材料研究学报, 2025, 39(8): 612-618.
[8] 张伟, 张兵, 周军, 刘跃, 王旭峰, 杨锋, 张海芹. 冷轧 Q 值对TA18管材塑性变形织构演变的影响[J]. 材料研究学报, 2025, 39(8): 619-631.
[9] 谭德新, 陈诗慧, 罗小丽, 宁小媚, 王艳丽. 富缺陷Pd纳米片的合成和对甘油的电催化氧化性能[J]. 材料研究学报, 2025, 39(8): 632-640.
[10] 张宁, 王耀奇, 杨毅, 慕延宏, 李震, 陈志勇. Ti65钛合金的超塑变形和微观组织演变[J]. 材料研究学报, 2025, 39(7): 489-498.
[11] 刘晶, 李云杰, 秦煜, 李琳琳. GCr15轴承钢中渗碳体粒径的调控对其硬度的影响[J]. 材料研究学报, 2025, 39(7): 521-532.
[12] 韩杨燚, 张腾昊, 张可, 赵时雨, 汪创伟, 余强, 李景辉, 孙新军. 终冷温度对Ti-V-Mo复合微合金钢析出相、组织和硬度的影响[J]. 材料研究学报, 2025, 39(7): 533-541.
[13] 刘志华, 王明月, 李易娟, 丘一帆, 李翔, 苏伟钊. 1T/2H O-MoS2@S-pCN催化剂的制备和性能[J]. 材料研究学报, 2025, 39(7): 551-560.
[14] 杨亮, 揣荣岩, 薛丹, 刘芳, 刘昆霖, 刘畅, 蔡桂喜. SUS301L不锈钢电阻点焊接头的微观组织和力学性能研究[J]. 材料研究学报, 2025, 39(6): 435-442.
[15] 姜爱龙, 谭炳治, 庞建超, 石锋, 张允继, 邹成路, 李守新, 伍启华, 李小武, 张哲峰. 蠕墨铸铁RuT300RuT450的低周疲劳性能和损伤机制[J]. 材料研究学报, 2025, 39(6): 443-454.