Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (11): 824-836    DOI: 10.11901/1005.3093.2024.489
  研究论文 本期目录 | 过刊浏览 |
T6Al-5Zn-2Mg铝合金的高温氧化行为及其机制
卢翠兰1,2, 许道奎1,2(), 王东亮1,2, 徐祥博1,2, 吕鑫1,2
1.中国科学院金属研究所 沈阳 110016
2.中国科学技术大学材料科学与工程学院 沈阳 110016
Oxidation Behavior of T6-treated Al-5Zn-2Mg Al-alloy in Air at 400 oC and 550 oC
LU Cuilan1,2, XU Daokui1,2(), WANG Dongliang1,2, XU Xiangbo1,2, LV Xin1,2
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

卢翠兰, 许道奎, 王东亮, 徐祥博, 吕鑫. T6Al-5Zn-2Mg铝合金的高温氧化行为及其机制[J]. 材料研究学报, 2025, 39(11): 824-836.
Cuilan LU, Daokui XU, Dongliang WANG, Xiangbo XU, Xin LV. Oxidation Behavior of T6-treated Al-5Zn-2Mg Al-alloy in Air at 400 oC and 550 oC[J]. Chinese Journal of Materials Research, 2025, 39(11): 824-836.

全文: PDF(38303 KB)   HTML
摘要: 

研究了T6态Al-5Zn-2Mg(质量分数,%)铝合金在400 ℃和550 ℃氧化0~384 h的氧化行为。结果表明,T6态Al-5Zn-2Mg合金主要有η'相、η相、含Fe相和Al基体。η'相在晶内弥散分布,η相择优分布在晶界,含Fe相沿挤压方向(ED)呈条带状分布。在400 ℃氧化,合金的抗高温氧化性能良好。氧化0~92 h的合金,其质量微弱增加。氧化192~384 h,合金的增重不随时间的延长而改变。氧化384 h,合金的氧化增重只有0.07 mg/cm2。在550 ℃氧化,合金的增重随着氧化时间的延长显著提高。氧化384 h,合金的氧化增重为0.33 mg/cm2。合金在400 ℃氧化后其表面形貌基本不变且没有出现O元素富集。但是,在550 ℃氧化后合金的表面变成灰黑色,且在含Fe相处及其近邻区域发生了显著的氧化损伤,致使Mg和O元素富集。

关键词 金属材料抗氧化行为高温氧化处理微观组织氧化动力学氧化膜形貌    
Abstract

The oxidation behavior of the T6-treated Al-5Zn-2Mg (in mass fraction) Al-alloy in air at 400 oC and 550 oC for 0 h to 384 h is comparatively studied via intermittent weighing, SEM+EDS and XRD etc. The results show that the alloy is mainly composed of Al-matrix with η' phase, η phase and Fe-containing phase. Among them, the η' phase is dispersed within grains, the η phase is preferentially distributed along grain boundaries, and the Fe-containing phase is mainly banded along the extrusion direction (ED). During oxidation at 400 oC, the alloy exhibits good resistance to high temperature oxidation. Within the range of 0 h to 192 h, it shows a slight increase in mass. From 192 h to 384 h, the mass increase does not change significantly with time. After oxidation for 384 h, the mass increase is only 0.07 mg/cm2. Upon oxidation at 550 oC, the mass of the alloy increases significantly with the extension of time. After oxidation for 384 h, its mass increased by 0.33 mg/cm2. Besides, failure analysis shows that the surface morphology of the alloy remained basically unchanged after oxidation at 400 oC and no O enrichment was observed on the surface. However, after oxidation at 550 oC, the surface of the alloy turned gray-black, implying the occurrence of significant oxidation in the Fe-containing adjacent regions and its vicinity, resulting in the enrichment of Mg and O there.

Key wordsmetallic materials    oxidation resistance    high temperature oxidation treatment    microstructure    oxidation kinetics    oxide film morphology
收稿日期: 2024-12-11     
ZTFLH:  TG172  
基金资助:国家自然科学基金(U21A2049);国家自然科学基金(52071220);国家自然科学基金(51971054)
通讯作者: 许道奎,研究员,dkxu@imr.ac.cn,研究方向为轻质合金的使役行为及其性能提高方法
Corresponding author: XU Daokui, Tel: (024)23915897, E-mail: dkxu@imr.ac.cn
作者简介: 卢翠兰,女,1998年生,硕士
图1  T6态Al-5Zn-2Mg铝合金表面的BSE形貌和放大区域对应的EDS面扫
图2  T6态Al-5Zn-2Mg铝合金的XRD谱
图3  T6态Al-5Zn-2Mg铝合金的高倍SEM和TEM形貌
图4  T6态Al-5Zn-2Mg铝合金在400 ℃和500 ℃的高温氧化增重变化趋势
图5  T6态Al-5Zn-2Mg铝合金在400 ℃氧化不同时间后表面的形貌
图6  T6态Al-5Zn-2Mg铝合金在550 ℃氧化不同时间后表面的形貌
图7  T6态Al-5Zn-2Mg铝合金在400 ℃和550 ℃高温氧化后表面高度的变化趋势
图8  T6态Al-5Zn-2Mg铝合金在400 ℃和550 ℃氧化不同时间后表面的二次电子形貌
Temperature / oCTime / hAlOMgZnFeMnSi
400094.780.561.572.490.320.290.00
4890.313.352.932.760.340.290.02
9689.644.153.332.300.280.250.06
28889.354.183.342.510.310.280.03
550094.060.721.682.420.760.280.08
4872.8513.899.722.280.670.480.10
9669.9815.1811.152.480.610.490.11
28870.2615.609.822.930.660.560.18
表1  T6态Al-5Zn-2Mg铝合金的高温氧化EDS数据
图9  T6态Al-5Zn-2Mg铝合金在400 ℃氧化288 h后的表面SE和BSE形貌以及EDS面扫结果
图10  T6态Al-5Zn-2Mg铝合金在550 ℃氧化288 h后的表面SE和BSE形貌以及EDS面扫结果
图11  T6态Al-5Zn-2Mg铝合金在不同温度氧化后的截面SEM形貌和面扫分布
[1] Almajid A A. High-temperature deformation of naturally aged 7010 aluminum alloy [J]. Metals, 2021, 11(4): 581
[2] Anyasodor G, Koroschetz C. Industrial based volume manufacturing of lightweight aluminium alloy panel components with high-strength and complex-shape for car body and chassis structures [J]. J. Phys. Conf. Ser., 2017, 896: 012093
[3] Belkacem L, Abdelbaki N, Otegui J L, et al. Using a supperficially treated 2024 aluminum alloy drill pipe to delay failure during dynamic loading [J]. Eng. Fail. Anal., 2019, 104: 261
[4] Hirsch J. Aluminium in innovative light-weight car design [J]. Mater. Trans., 2011, 52(5): 818
[5] Kim K J. Light-weight design and fatigue characteristics of automotive knuckle by using finite element analysis [J]. J. Mech. Sci. Technol., 2021, 35(7): 2989
[6] Oñoro J. High-temperature mechanical properties of aluminium alloys reinforced with titanium diboride (TiB2) particles [J]. Rare Met., 2011, 30(2): 200
[7] Wang Z X, Ma C Y, Li M Y, et al. Mechanical properties of 7A04-T6 high strength structural aluminium alloy at elevated temperatures and after cooling down [J]. Thin-Walled Struct., 2022, 180: 109930
[8] Yang X, Zhang X F, Liu Y, et al. Environmental failure behavior analysis of 7085 high strength aluminum alloy under high temperature and high humidity [J]. Metals, 2022, 12(6): 968
[9] Shakesheff A J, Purdue G. Designing metal matrix composites to meet their target: particulate reinforced aluminium alloys for missile applications [J]. Mater. Sci. Technol., 1998, 14(9-10): 851
[10] Liu L W, Yang M M, Fan H J, et al. Numerical computation and analysis on the temperature field of antitank missile skin [J]. Infrared Technol., 2013, 35(7): 430
[10] 刘连伟, 杨淼淼, 樊宏杰 等. 反坦克导弹蒙皮温度场的数值计算与分析 [J]. 红外技术, 2013, 35(7): 430
[11] Ma X, Zhao Y F, Tian W J, et al. A novel Al matrix composite reinforced by Nano-AlNp network [J]. Sci. Rep., 2016, 6: 34919
[12] Bai X R, Xie H N, Zhang X, et al. Heat-resistant super-dispersed oxide strengthened aluminium alloys [J]. Nat. Mater., 2024, 23(6): 747
[13] Cheng F J, Yao J F, Yang Z W, et al. Structure and composition of oxide film on 5083 alloy at brazing temperature [J]. Mater. Sci. Technol., 2015, 31(11): 1282
[14] Attafi S, Aklouche-Benouaguef S, Talaş Ş. Time dependent ambient oxidation of AA6061-T6 alloy at the temperature of 580 oC [J]. Prot. Met. Phys. Chem. Surf., 2021, 57(4): 786
[15] Kim K. Formation of fine clusters in high-temperature oxidation of molten aluminum [J]. Metall. Mater. Trans., 2014, 45A: 3650
[16] Tanner D A, Belochapkine S, Laffir F, et al. Kirkendall void formation during room-temperature air-oxidation of thin aluminium and aluminium-lithium alloy films [J]. Mater. High Temp., 2012, 29(3): 235
[17] Tenório J A S, Espinosa D C R. High-temperature oxidation of Al-Mg alloys [J]. Oxid. Met., 2000, 53(3-4): 361
[18] Pardo A, Merino M C, Arrabal R, et al. Effect of La surface coatings on oxidation behavior of aluminum alloy/SiCp composites [J]. Oxid. Met., 2007, 67(1-2): 67
[19] Krainikov A V. Effect of the structure and chemical inhomogeneity of rapidly solidified powders on the properties of aluminum alloys [J]. Powder Metall. Met. Ceram., 2010, 49(7-8): 397
[20] Zhao P H, Wu X L, Liu Y, et al. Microstructure, mechanical properties and corrosion behavior of commercial 7N01 alloys [J]. Trans. Nonferr. Met. Soc. China, 2022, 32(3): 778
[21] Yan P, Zhang Z Y, Zhou C X, et al. Enhancement of corrosion resistance of a high Zn-yttrium aluminum alloy [J]. J. Alloy. Compd., 2020, 817: 152744
[22] Lv H B. Oxidation of Cu-Al alloys [D]. Changchun: Jilin University, 2010
[22] 吕海波. 铜铝合金氧化过程探讨 [D]. 长春: 吉林大学, 2010
[23] Xie D B, Hong H, Duo S W, et al. Degradation of oxide on surface of Al-Mg alloy in combustion atmospheres [J]. Surf. Technol., 2020, 49(1): 79
[23] 谢冬柏, 洪 昊, 多树旺 等. 铝合金表面氧化层在燃烧气氛中的退化行为 [J]. 表面技术, 2020, 49(1): 79
[24] Chu R. Studies on high-temperature oxidation and its influence mechanism of Fe-Cr-Al alloy [D]. Shenyang: Shenyang Normal University, 2013
[24] 褚 冉. Fe-Cr-Al合金高温氧化及影响机理研究 [D]. 沈阳: 沈阳师范大学, 2013
[25] Zhang X, Luo Z A, Liu Z S, et al. Interfacial microstructure and mechanical properties of 7050 aluminum alloy clad plates [J]. Chin. J. Nonferrous Met., 2023, 33(11): 3558
[25] 张 新, 骆宗安, 刘照松 等. 7050铝合金复合板界面处微观组织和力学性能 [J]. 中国有色金属学报, 2023, 33(11): 3558
[26] Zhu Z F, Chen J F, Xu G F. Research on high temperature oxidation behavior of Al-25Cu-12Mg alloy [J]. Hot Work. Technol., 2014, 43(14): 56
[26] 祝贞凤, 陈举飞, 徐国富. Al-25Cu-12Mg合金的高温氧化行为研究 [J]. 热加工工艺, 2014, 43(14): 56
[27] Mu W Y. Studies on oxidation behavior and properties of surface oxide film of aluminum in high-temperature water vapor [D]. Xi'an: Xi'an University of Architecture and Technology, 2004
[27] 慕伟意. 铝在高温水蒸汽中氧化行为及表面氧化膜性能的研究 [D]. 西安: 西安建筑科技大学, 2004
[28] Pan N. Investigation on oxidation dynamic and process of magnesium-aluminium alloys [D]. Taiyuan: Taiyuan University of Technology, 2012
[28] 潘 娜.镁铝合金高温氧化动力学及氧化过程研究 [D]. 太原: 太原理工大学, 2012
[29] Xu D K, Rometsch P A, Birbilis N. Improved solution treatment for an as-rolled Al-Zn-Mg-Cu alloy. Part I. Characterisation of constituent particles and overheating [J]. Mater. Sci. Eng., 2012, 534A: 234
[30] Wang T, Yin Z M, Sun Q. Effect of homogenization treatment on microstructure and hot workability of high strength 7B04 aluminium alloy [J]. Trans. Nonferr. Met. Soc., 2007, 17(2): 335
[31] Zhang K, Chen J Q, Ma P Z, et al. Effect of welding thermal cycle on microstructural evolution of Al-Zn-Mg-Cu alloy [J]. Mater. Sci. Eng., 2018, 717A: 85
[1] 杨景清, 董文超, 陆善平. δ-铁素体含量对高SiN奥氏体不锈钢焊缝性能的影响[J]. 材料研究学报, 2025, 39(9): 641-649.
[2] 詹杰, 陈小江, 邹之利, 苏兴东, 谢世宇, 江亮, 王金铃, 王烈林. 纳米Ag0@ACF材料的制备及其对气态碘的吸附性能[J]. 材料研究学报, 2025, 39(9): 673-682.
[3] 施渊吉, 程诚, 张海涛, 胡道春, 陈晶晶, 黎军顽. β-SiC半导体器件在滑动摩擦中材料去除行为的纳观分析[J]. 材料研究学报, 2025, 39(9): 701-711.
[4] 周影影, 张瑛嫺, 淡卓娅, 杜旭, 杜浩楠, 甄恩远, 罗发. 掺杂LaYFeO3 陶瓷吸波性能的影响[J]. 材料研究学报, 2025, 39(8): 561-568.
[5] 王铭宇, 李述军, 和正华, 唐明德, 张思倩, 张浩宇, 周舸, 陈立佳. 激光功率和扫描速度对SLM制备Ti5553合金性能的影响[J]. 材料研究学报, 2025, 39(8): 583-591.
[6] 耿瑞文, 杨志豇, 杨蔚华, 谢启明, 游津京, 李立军, 吴海华. 6H-SiC纳米磨削亚表面损伤机理的分子动力学研究[J]. 材料研究学报, 2025, 39(8): 603-611.
[7] 陆通, 王亚娜, 张超, 雷芃, 张鸿荣, 黄光伟, 郑立允. BN掺杂对热变形钕铁硼磁体性能的影响[J]. 材料研究学报, 2025, 39(8): 612-618.
[8] 张伟, 张兵, 周军, 刘跃, 王旭峰, 杨锋, 张海芹. 冷轧 Q 值对TA18管材塑性变形织构演变的影响[J]. 材料研究学报, 2025, 39(8): 619-631.
[9] 谭德新, 陈诗慧, 罗小丽, 宁小媚, 王艳丽. 富缺陷Pd纳米片的合成和对甘油的电催化氧化性能[J]. 材料研究学报, 2025, 39(8): 632-640.
[10] 张宁, 王耀奇, 杨毅, 慕延宏, 李震, 陈志勇. Ti65钛合金的超塑变形和微观组织演变[J]. 材料研究学报, 2025, 39(7): 489-498.
[11] 刘晶, 李云杰, 秦煜, 李琳琳. GCr15轴承钢中渗碳体粒径的调控对其硬度的影响[J]. 材料研究学报, 2025, 39(7): 521-532.
[12] 韩杨燚, 张腾昊, 张可, 赵时雨, 汪创伟, 余强, 李景辉, 孙新军. 终冷温度对Ti-V-Mo复合微合金钢析出相、组织和硬度的影响[J]. 材料研究学报, 2025, 39(7): 533-541.
[13] 刘志华, 王明月, 李易娟, 丘一帆, 李翔, 苏伟钊. 1T/2H O-MoS2@S-pCN催化剂的制备和性能[J]. 材料研究学报, 2025, 39(7): 551-560.
[14] 杨亮, 揣荣岩, 薛丹, 刘芳, 刘昆霖, 刘畅, 蔡桂喜. SUS301L不锈钢电阻点焊接头的微观组织和力学性能研究[J]. 材料研究学报, 2025, 39(6): 435-442.
[15] 姜爱龙, 谭炳治, 庞建超, 石锋, 张允继, 邹成路, 李守新, 伍启华, 李小武, 张哲峰. 蠕墨铸铁RuT300RuT450的低周疲劳性能和损伤机制[J]. 材料研究学报, 2025, 39(6): 443-454.