Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (10): 791-800    DOI: 10.11901/1005.3093.2024.463
  研究论文 本期目录 | 过刊浏览 |
热等静压SLM Ti-6Al-4V合金的缺口敏感性
臧涛1, 杨朋飞1(), 赵元1(), 高英1, 鄂世举1, 刘洋2, 齐山贺3, 张烨3, 张嘉振3
1 浙江师范大学工学院 金华 321004
2 浙江师范大学数学学院 金华 321004
3 中国商用飞机有限责任公司北京民用飞机技术研究中心 北京 102200
Effect of Hot Isostatic Pressing on Notch Sensitivity of Ti-6Al-4V Ti-alloy Prepared by Selective Laser Melting
ZANG Tao1, YANG Pengfei1(), ZHAO Yuan1(), GAO Ying1, E Shiju1, LIU Yang2, QI Shanhe3, ZHANG Ye3, ZHANG Jiazhen3
1 College of Engineering, Zhejiang Normal University, Jinhua 321004, China
2 School of Mathematical Sciences, Zhejiang Normal University, Jinhua 321004, China
3 Beijing Aeronautical Science and Technology Research Institute of COMAC, Beijing 102200, China
引用本文:

臧涛, 杨朋飞, 赵元, 高英, 鄂世举, 刘洋, 齐山贺, 张烨, 张嘉振. 热等静压SLM Ti-6Al-4V合金的缺口敏感性[J]. 材料研究学报, 2025, 39(10): 791-800.
Tao ZANG, Pengfei YANG, Yuan ZHAO, Ying GAO, Shiju E, Yang LIU, Shanhe QI, Ye ZHANG, Jiazhen ZHANG. Effect of Hot Isostatic Pressing on Notch Sensitivity of Ti-6Al-4V Ti-alloy Prepared by Selective Laser Melting[J]. Chinese Journal of Materials Research, 2025, 39(10): 791-800.

全文: PDF(29024 KB)   HTML
摘要: 

研究了用激光选区熔化(SLM)制备的Ti-6Al-4V合金经热等静压(HIP)处理后在含缺口(应力集中系数Kt = 3)条件下的高周疲劳性能,并揭示了其对缺口的高敏感性机制。结果表明,虽然HIP处理的SLM Ti-6Al-4V合金静态拉伸强度和硬度都优于锻造态合金,但是在含缺口条件下其疲劳性能显著降低,疲劳极限从锻造态的250 MPa降低到150 MPa。SLM+HIP Ti-6Al-4V合金对缺口高度敏感的原因有:一是SLM+HIP合金的裂纹萌生区呈现准解理断裂的脆性形貌(显著不同于锻造态合金的典型韧性断裂形貌),使其发生脆性断裂的裂纹更易萌生;二是晶粒尺寸的影响,SLM+HIP合金的晶粒是特有的板条状,其晶粒尺寸(比锻造态合金的)较大。SLM+HIP合金在 X 方向和 Z 方向的平均晶粒尺寸分别为2.34和2.58 μm (显著高于锻造态合金的1.63 μm),较大的晶粒加剧了对缺口的敏感性,使其在疲劳过程中裂纹更易萌生和扩展。

关键词 金属材料疲劳性能缺口应力集中Ti-6Al-4V激光选区熔化热等静压    
Abstract

The block Ti-6Al-4V alloy was fabricated by selective laser melting (SLM) and then subjected to hot isostatic pressing (HIP) treatment. Next, the influence of HIP on the high cycle fatigue performance of the alloy with notch (stress concentration factor Kt = 3) was assessed, while elucidating the mechanisms related with the high notch sensitivity of the SLM+HIP Ti-6Al-4V alloy. The results indicate that although the SLM+HIP Ti-6Al-4V alloy exhibits superior static tensile strength and hardness compared to wrought counterparts, its fatigue performance under notched conditions is significantly compromised, with the fatigue limit decreasing from 250 MPa (wrought) to 150 MPa. Further analysis reveals that the high notch sensitivity of the SLM+HIP Ti-6Al-4V alloy may mainly be attributed to two factors: (1) differences in crack initiation mechanisms, i.e., as the crack initiation region of SLM+HIP alloy exhibits cleavage-like brittle fracture morphology, distinctly different from the ductile fracture morphology of the forged alloy, leading to a higher propensity for brittle crack initiation; and (2) the influence of grain size characteristics, namely the SLM+HIP alloy exhibits a unique lath-like grain structure, with an overall larger grain size compared to the forged alloy. Specifically, the average grain size in the X and Z directions is 2.34 and 2.58 μm, respectively, which is significantly larger than 1.63 μm in the forged alloy. This increased grain size exacerbates its notch sensitivity, making cracks more prone to initiation and propagation during the fatigue process.

Key wordsmetallic materials    fatigue performance    notch stress concentration    Ti-6Al-4V    selective laser melting    hot isostatic pressing
收稿日期: 2024-11-25     
ZTFLH:  TG115  
基金资助:浙江省自然科学基金(LQ22A020005)
通讯作者: 杨朋飞,yangpf@zjnu.edu.cn,研究方向为金属增材制造
赵元,副教授,zhaoyuan@zjnu.edu.cn,研究方向为金属疲劳
Corresponding author: YANG Pengfei, Tel: 15608083713, E-mail: yangpf@zjnu.edu.cn
ZHAO Yuan, Tel: 19846764664, E-mail: zhaoyuan@zjnu.edu.cn
作者简介: 臧 涛,男,1999年生,硕士
MaterialAlVOCNFeTi
Wrought6.004.070.1520.0160.0040.050Bal.
SLM+HIP6.114.050.080.010.010.11Bal.
表1  Ti-6Al-4V合金的成分
图1  试样的尺寸形状和实验方法
图2  Ti-6Al-4V合金的金相组织
图3  Ti-6Al-4V合金在不同条件下的显微硬度
MaterialModulus / GPaStrength / MPaElongation / %
Wrought115 ± 3.6886 ± 1719 ± 2.4
HIP-X121 ± 6.31015 ± 8.718 ± 1.7
HIP-Z117 ± 8.51022 ± 5.716 ± 2.5
表2  不同状态Ti-6Al-4V合金的静力拉伸力学性能
图4  不同状态下的疲劳寿命S-N曲线
图5  Ti-6Al-4V合金的拉伸断口形貌
图6  疲劳试件断口的宏观形貌和裂纹萌生位置的微观形貌
图7  不同位置的疲劳裂纹扩展的微观形貌
图8  不同状态下Ti-6Al-4V合金疲劳瞬断区的微观形貌
图9  不同状态下Ti-6Al-4V合金样品的晶粒尺寸和微观结构
图10  缺口条件下Ti-6Al-4V合金的裂纹萌生机制
图11  缺口应力集中条件下Ti-6Al-4V合金的断裂模式
[1] Zerbst U, Bruno G, Buffière J Y, et al. Damage tolerant design of additively manufactured metallic components subjected to cyclic loading: State of the art and challenges [J]. Prog. Mater. Sci., 2021, 121: 100786
[2] Sanaei N, Fatemi A. Defects in additive manufactured metals and their effect on fatigue performance: A state-of-the-art review [J]. Prog. Mater. Sci., 2021, 117: 100724
[3] Yi M, Tang W, Zhu Y Q, et al. A holistic review on fatigue properties of additively manufactured metals [J]. J. Mater. Process. Technol., 2024, 329: 118425
[4] Lu B H, Li D C. Development of the additive manufacturing (3D Printing) technology [J]. Mech. Manuf. Autom., 2013, 42(4): 1
[4] 卢秉恒, 李涤尘. 增材制造(3D打印)技术发展 [J]. 机械制造与自动化, 2013, 42(4): 1
[5] Neikter M, Åkerfeldt P, Pederson R, et al. Microstructural characterization and comparison of Ti-6Al-4V manufactured with different additive manufacturing processes [J]. Mater. Charact., 2018, 143: 68
[6] Ren Y M, Lin X, Huang W D, et al. Research progress of microstructure and fatigue behavior in additive manufacturing Ti-6Al-4V alloy [J]. Rare Met. Mater. Eng., 2017, 46(10): 3160
[6] 任永明, 林 鑫, 黄卫东 等. 增材制造Ti-6Al-4V合金组织及疲劳性能研究进展 [J]. 稀有金属材料与工程, 2017, 46(10): 3160
[7] Gorelik M. Additive manufacturing in the context of structural integrity [J]. Int. J. Fatigue, 2017, 94: 168
[8] Wu Z K, Wu S C, Zhang J, et al. Defect induced fatigue behaviors of selective laser melted Ti-6Al-4V via synchrotron radiation X-Ray tomography [J]. Acta Metall. Sin., 2019, 55: 811
[8] 吴正凯, 吴圣川, 张 杰 等. 基于同步辐射X射线成像的选区激光熔化Ti-6Al-4V合金缺陷致疲劳行为 [J]. 金属学报, 2019, 55: 811
[9] Cao X Z, Han X Q, Gai P T. Influences of surface integrity on fatigue property of Ti6Al4V alloy [J]. Aeronaut. Manuf. Technol., 2014, (14): 95
[9] 曹秀中, 韩秀全, 盖鹏涛. 表面完整性对Ti6Al4V钛合金疲劳性能的影响 [J]. 航空制造技术, 2014, (14): 95
[10] Becker T H, Kumar P, Ramamurty U. Fracture and fatigue in additively manufactured metals [J]. Acta Mater., 2021, 219: 117240
[11] Wang H, Gao Q. Influence of Notch Stress-concentration on the ultra-high-cycle fatigue behaviors of 40Cr steel [J]. Mater. Mechan. Eng., 2004, 28: 12
[11] 王 弘, 高 庆. 缺口应力集中对40Cr钢高周疲劳性能的影响 [J]. 机械工程材料, 2004, 28: 12
[12] Gates N, Fatemi A. Notch deformation and stress gradient effects in multiaxial fatigue [J]. Theor. Appl. Fract. Mech., 2016, 84: 3
[13] Schijve J. Stress gradients around notches [J]. Fatigue Fract. Eng. Mater. Struct., 1980, 3: 325
[14] Liao D, Zhu S P, Qing G A. Multiaxial fatigue analysis of notched components using combined critical plane and critical distance approach [J]. Int. J. Mech. Sci., 2019, 160: 38
[15] Kahlin M, Ansell H, Moverare J J. Fatigue behaviour of notched additive manufactured Ti6Al4V with as-built surfaces [J]. Int. J. Fatigue, 2017, 101: 51
[16] Razavi N, Ferro P, Berto F, et al. Fatigue strength of blunt V-notched specimens produced by selective laser melting of Ti-6Al-4V [J]. Theor. Appl. Fract. Mech., 2018, 97: 376
[17] Vayssette B, Saintier N, Brugger C, et al. Numerical modelling of surface roughness effect on the fatigue behavior of Ti-6Al-4V obtained by additive manufacturing [J]. Int. J. Fatigue, 2019, 123: 138
[18] Benedetti M, Santus C. Notch fatigue and crack growth resistance of Ti-6Al-4V ELI additively manufactured via selective laser melting: A critical distance approach to defect sensitivity [J]. Int. J. Fatigue, 2019, 121: 281
[19] Razavi N, Askes H, Berto F, et al. Length scale parameters to estimate fatigue lifetime of 3D-printed titanium alloy Ti6Al4V containing notches in the as-manufactured condition [J]. Int. J. Fatigue, 2023, 167: 107348
[20] Li P, Warner D H, Pegues J W, et al. Investigation of the mechanisms by which hot isostatic pressing improves the fatigue performance of powder bed fused Ti-6Al-4V [J]. Int. J. Fatigue, 2019, 120: 342
[21] Tahri C, Chauveau T, Hocini A, et al. Impact of hot isostatic pressing treatments on the mechanical performance of EBMed Ti-6Al-4V alloy [J]. Mater. Charact., 2023, 201: 112962
[22] Zhao X L, Li S J, Zhang M, et al. Comparison of the microstructures and mechanical properties of Ti-6Al-4V fabricated by selective laser melting and electron beam melting [J]. Mater. Des., 2016, 95: 21
[23] Gushchina M, Turichin G, Klimova-Korsmik O, et al. Features of heat treatment the Ti-6Al-4V GTD blades manufactured by DLD additive technology [J]. Materials (Basel), 2021, 14(15): 4159
[24] Günther J, Krewerth D, Lippmann T, et al. Fatigue life of additively manufactured Ti-6Al-4V in the very high cycle fatigue regime [J]. Int. J. Fatigue, 2017, 94: 236
[25] Leuders S, Thöne M, Riemer A, et al. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance [J]. Int. J. Fatigue, 2013, 48: 300
[26] Zhao S H, Yuan K B, Guo W G, et al. A comparative study of laser metal deposited and forged Ti-6Al-4V alloy: Uniaxial mechanical response and vibration fatigue properties [J]. Int. J. Fatigue, 2020, 136: 105629
[27] Hall E O. The deformation and ageing of mild steel: III discussion of results [J]. Proc. Phys. Soc. Sect., 1951, 64B: 747
[28] Petch N J. The cleavage strength of polycrystal [J]. J. Iron Steel Inst., 1953, 174: 25
[29] Chi W Q, Li G, Wang W J, et al. Interior initiation and early growth of very high cycle fatigue crack in an additively manufactured Ti-alloy [J]. Int. J. Fatigue, 2022, 160: 106862
[30] Hong Y S, Lei Z Q, Sun C Q, et al. Propensities of crack interior initiation and early growth for very-high-cycle fatigue of high strength steels [J]. Int. J. Fatigue, 2014, 58: 144
[31] Dong N J, Wang K K, Wen J F, et al. Effects of post-processing and loading orientation on high-cycle fatigue of selective laser melted Ti-6Al-4V [J]. Int. J. Fatigue, 2024, 187: 108433
[32] Bache M R. Processing titanium alloys for optimum fatigue performance [J]. Int. J. Fatigue, 1999, 21(Suppl. 1): S105
[33] Neal D F, Blenkinsop P A. Internal fatigue origins in α-β titanium alloys [J]. Acta Metall., 1976, 24: 59
[1] 杨景清, 董文超, 陆善平. δ-铁素体含量对高SiN奥氏体不锈钢焊缝性能的影响[J]. 材料研究学报, 2025, 39(9): 641-649.
[2] 詹杰, 陈小江, 邹之利, 苏兴东, 谢世宇, 江亮, 王金铃, 王烈林. 纳米Ag0@ACF材料的制备及其对气态碘的吸附性能[J]. 材料研究学报, 2025, 39(9): 673-682.
[3] 施渊吉, 程诚, 张海涛, 胡道春, 陈晶晶, 黎军顽. β-SiC半导体器件在滑动摩擦中材料去除行为的纳观分析[J]. 材料研究学报, 2025, 39(9): 701-711.
[4] 周影影, 张瑛嫺, 淡卓娅, 杜旭, 杜浩楠, 甄恩远, 罗发. 掺杂LaYFeO3 陶瓷吸波性能的影响[J]. 材料研究学报, 2025, 39(8): 561-568.
[5] 王铭宇, 李述军, 和正华, 唐明德, 张思倩, 张浩宇, 周舸, 陈立佳. 激光功率和扫描速度对SLM制备Ti5553合金性能的影响[J]. 材料研究学报, 2025, 39(8): 583-591.
[6] 耿瑞文, 杨志豇, 杨蔚华, 谢启明, 游津京, 李立军, 吴海华. 6H-SiC纳米磨削亚表面损伤机理的分子动力学研究[J]. 材料研究学报, 2025, 39(8): 603-611.
[7] 陆通, 王亚娜, 张超, 雷芃, 张鸿荣, 黄光伟, 郑立允. BN掺杂对热变形钕铁硼磁体性能的影响[J]. 材料研究学报, 2025, 39(8): 612-618.
[8] 张伟, 张兵, 周军, 刘跃, 王旭峰, 杨锋, 张海芹. 冷轧 Q 值对TA18管材塑性变形织构演变的影响[J]. 材料研究学报, 2025, 39(8): 619-631.
[9] 谭德新, 陈诗慧, 罗小丽, 宁小媚, 王艳丽. 富缺陷Pd纳米片的合成和对甘油的电催化氧化性能[J]. 材料研究学报, 2025, 39(8): 632-640.
[10] 张宁, 王耀奇, 杨毅, 慕延宏, 李震, 陈志勇. Ti65钛合金的超塑变形和微观组织演变[J]. 材料研究学报, 2025, 39(7): 489-498.
[11] 刘晶, 李云杰, 秦煜, 李琳琳. GCr15轴承钢中渗碳体粒径的调控对其硬度的影响[J]. 材料研究学报, 2025, 39(7): 521-532.
[12] 韩杨燚, 张腾昊, 张可, 赵时雨, 汪创伟, 余强, 李景辉, 孙新军. 终冷温度对Ti-V-Mo复合微合金钢析出相、组织和硬度的影响[J]. 材料研究学报, 2025, 39(7): 533-541.
[13] 刘志华, 王明月, 李易娟, 丘一帆, 李翔, 苏伟钊. 1T/2H O-MoS2@S-pCN催化剂的制备和性能[J]. 材料研究学报, 2025, 39(7): 551-560.
[14] 杨亮, 揣荣岩, 薛丹, 刘芳, 刘昆霖, 刘畅, 蔡桂喜. SUS301L不锈钢电阻点焊接头的微观组织和力学性能研究[J]. 材料研究学报, 2025, 39(6): 435-442.
[15] 姜爱龙, 谭炳治, 庞建超, 石锋, 张允继, 邹成路, 李守新, 伍启华, 李小武, 张哲峰. 蠕墨铸铁RuT300RuT450的低周疲劳性能和损伤机制[J]. 材料研究学报, 2025, 39(6): 443-454.