|
|
热等静压SLM Ti-6Al-4V合金的缺口敏感性 |
臧涛1, 杨朋飞1( ), 赵元1( ), 高英1, 鄂世举1, 刘洋2, 齐山贺3, 张烨3, 张嘉振3 |
1 浙江师范大学工学院 金华 321004 2 浙江师范大学数学学院 金华 321004 3 中国商用飞机有限责任公司北京民用飞机技术研究中心 北京 102200 |
|
Effect of Hot Isostatic Pressing on Notch Sensitivity of Ti-6Al-4V Ti-alloy Prepared by Selective Laser Melting |
ZANG Tao1, YANG Pengfei1( ), ZHAO Yuan1( ), GAO Ying1, E Shiju1, LIU Yang2, QI Shanhe3, ZHANG Ye3, ZHANG Jiazhen3 |
1 College of Engineering, Zhejiang Normal University, Jinhua 321004, China 2 School of Mathematical Sciences, Zhejiang Normal University, Jinhua 321004, China 3 Beijing Aeronautical Science and Technology Research Institute of COMAC, Beijing 102200, China |
引用本文:
臧涛, 杨朋飞, 赵元, 高英, 鄂世举, 刘洋, 齐山贺, 张烨, 张嘉振. 热等静压SLM Ti-6Al-4V合金的缺口敏感性[J]. 材料研究学报, 2025, 39(10): 791-800.
Tao ZANG,
Pengfei YANG,
Yuan ZHAO,
Ying GAO,
Shiju E,
Yang LIU,
Shanhe QI,
Ye ZHANG,
Jiazhen ZHANG.
Effect of Hot Isostatic Pressing on Notch Sensitivity of Ti-6Al-4V Ti-alloy Prepared by Selective Laser Melting[J]. Chinese Journal of Materials Research, 2025, 39(10): 791-800.
[1] |
Zerbst U, Bruno G, Buffière J Y, et al. Damage tolerant design of additively manufactured metallic components subjected to cyclic loading: State of the art and challenges [J]. Prog. Mater. Sci., 2021, 121: 100786
|
[2] |
Sanaei N, Fatemi A. Defects in additive manufactured metals and their effect on fatigue performance: A state-of-the-art review [J]. Prog. Mater. Sci., 2021, 117: 100724
|
[3] |
Yi M, Tang W, Zhu Y Q, et al. A holistic review on fatigue properties of additively manufactured metals [J]. J. Mater. Process. Technol., 2024, 329: 118425
|
[4] |
Lu B H, Li D C. Development of the additive manufacturing (3D Printing) technology [J]. Mech. Manuf. Autom., 2013, 42(4): 1
|
[4] |
卢秉恒, 李涤尘. 增材制造(3D打印)技术发展 [J]. 机械制造与自动化, 2013, 42(4): 1
|
[5] |
Neikter M, Åkerfeldt P, Pederson R, et al. Microstructural characterization and comparison of Ti-6Al-4V manufactured with different additive manufacturing processes [J]. Mater. Charact., 2018, 143: 68
|
[6] |
Ren Y M, Lin X, Huang W D, et al. Research progress of microstructure and fatigue behavior in additive manufacturing Ti-6Al-4V alloy [J]. Rare Met. Mater. Eng., 2017, 46(10): 3160
|
[6] |
任永明, 林 鑫, 黄卫东 等. 增材制造Ti-6Al-4V合金组织及疲劳性能研究进展 [J]. 稀有金属材料与工程, 2017, 46(10): 3160
|
[7] |
Gorelik M. Additive manufacturing in the context of structural integrity [J]. Int. J. Fatigue, 2017, 94: 168
|
[8] |
Wu Z K, Wu S C, Zhang J, et al. Defect induced fatigue behaviors of selective laser melted Ti-6Al-4V via synchrotron radiation X-Ray tomography [J]. Acta Metall. Sin., 2019, 55: 811
|
[8] |
吴正凯, 吴圣川, 张 杰 等. 基于同步辐射X射线成像的选区激光熔化Ti-6Al-4V合金缺陷致疲劳行为 [J]. 金属学报, 2019, 55: 811
|
[9] |
Cao X Z, Han X Q, Gai P T. Influences of surface integrity on fatigue property of Ti6Al4V alloy [J]. Aeronaut. Manuf. Technol., 2014, (14): 95
|
[9] |
曹秀中, 韩秀全, 盖鹏涛. 表面完整性对Ti6Al4V钛合金疲劳性能的影响 [J]. 航空制造技术, 2014, (14): 95
|
[10] |
Becker T H, Kumar P, Ramamurty U. Fracture and fatigue in additively manufactured metals [J]. Acta Mater., 2021, 219: 117240
|
[11] |
Wang H, Gao Q. Influence of Notch Stress-concentration on the ultra-high-cycle fatigue behaviors of 40Cr steel [J]. Mater. Mechan. Eng., 2004, 28: 12
|
[11] |
王 弘, 高 庆. 缺口应力集中对40Cr钢高周疲劳性能的影响 [J]. 机械工程材料, 2004, 28: 12
|
[12] |
Gates N, Fatemi A. Notch deformation and stress gradient effects in multiaxial fatigue [J]. Theor. Appl. Fract. Mech., 2016, 84: 3
|
[13] |
Schijve J. Stress gradients around notches [J]. Fatigue Fract. Eng. Mater. Struct., 1980, 3: 325
|
[14] |
Liao D, Zhu S P, Qing G A. Multiaxial fatigue analysis of notched components using combined critical plane and critical distance approach [J]. Int. J. Mech. Sci., 2019, 160: 38
|
[15] |
Kahlin M, Ansell H, Moverare J J. Fatigue behaviour of notched additive manufactured Ti6Al4V with as-built surfaces [J]. Int. J. Fatigue, 2017, 101: 51
|
[16] |
Razavi N, Ferro P, Berto F, et al. Fatigue strength of blunt V-notched specimens produced by selective laser melting of Ti-6Al-4V [J]. Theor. Appl. Fract. Mech., 2018, 97: 376
|
[17] |
Vayssette B, Saintier N, Brugger C, et al. Numerical modelling of surface roughness effect on the fatigue behavior of Ti-6Al-4V obtained by additive manufacturing [J]. Int. J. Fatigue, 2019, 123: 138
|
[18] |
Benedetti M, Santus C. Notch fatigue and crack growth resistance of Ti-6Al-4V ELI additively manufactured via selective laser melting: A critical distance approach to defect sensitivity [J]. Int. J. Fatigue, 2019, 121: 281
|
[19] |
Razavi N, Askes H, Berto F, et al. Length scale parameters to estimate fatigue lifetime of 3D-printed titanium alloy Ti6Al4V containing notches in the as-manufactured condition [J]. Int. J. Fatigue, 2023, 167: 107348
|
[20] |
Li P, Warner D H, Pegues J W, et al. Investigation of the mechanisms by which hot isostatic pressing improves the fatigue performance of powder bed fused Ti-6Al-4V [J]. Int. J. Fatigue, 2019, 120: 342
|
[21] |
Tahri C, Chauveau T, Hocini A, et al. Impact of hot isostatic pressing treatments on the mechanical performance of EBMed Ti-6Al-4V alloy [J]. Mater. Charact., 2023, 201: 112962
|
[22] |
Zhao X L, Li S J, Zhang M, et al. Comparison of the microstructures and mechanical properties of Ti-6Al-4V fabricated by selective laser melting and electron beam melting [J]. Mater. Des., 2016, 95: 21
|
[23] |
Gushchina M, Turichin G, Klimova-Korsmik O, et al. Features of heat treatment the Ti-6Al-4V GTD blades manufactured by DLD additive technology [J]. Materials (Basel), 2021, 14(15): 4159
|
[24] |
Günther J, Krewerth D, Lippmann T, et al. Fatigue life of additively manufactured Ti-6Al-4V in the very high cycle fatigue regime [J]. Int. J. Fatigue, 2017, 94: 236
|
[25] |
Leuders S, Thöne M, Riemer A, et al. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance [J]. Int. J. Fatigue, 2013, 48: 300
|
[26] |
Zhao S H, Yuan K B, Guo W G, et al. A comparative study of laser metal deposited and forged Ti-6Al-4V alloy: Uniaxial mechanical response and vibration fatigue properties [J]. Int. J. Fatigue, 2020, 136: 105629
|
[27] |
Hall E O. The deformation and ageing of mild steel: III discussion of results [J]. Proc. Phys. Soc. Sect., 1951, 64B: 747
|
[28] |
Petch N J. The cleavage strength of polycrystal [J]. J. Iron Steel Inst., 1953, 174: 25
|
[29] |
Chi W Q, Li G, Wang W J, et al. Interior initiation and early growth of very high cycle fatigue crack in an additively manufactured Ti-alloy [J]. Int. J. Fatigue, 2022, 160: 106862
|
[30] |
Hong Y S, Lei Z Q, Sun C Q, et al. Propensities of crack interior initiation and early growth for very-high-cycle fatigue of high strength steels [J]. Int. J. Fatigue, 2014, 58: 144
|
[31] |
Dong N J, Wang K K, Wen J F, et al. Effects of post-processing and loading orientation on high-cycle fatigue of selective laser melted Ti-6Al-4V [J]. Int. J. Fatigue, 2024, 187: 108433
|
[32] |
Bache M R. Processing titanium alloys for optimum fatigue performance [J]. Int. J. Fatigue, 1999, 21(Suppl. 1): S105
|
[33] |
Neal D F, Blenkinsop P A. Internal fatigue origins in α-β titanium alloys [J]. Acta Metall., 1976, 24: 59
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|