材料研究学报, 2025, 39(9): 673-682 DOI: 10.11901/1005.3093.2024.336

研究论文

纳米Ag0@ACF材料的制备及其对气态碘的吸附性能

詹杰1, 陈小江2, 邹之利3, 苏兴东1, 谢世宇4, 江亮2, 王金铃5, 王烈林,2

1.中广核研究院有限公司 深圳 518028

2.西南科技大学 核环境安全技术创新中心 绵阳 621010

3.阳江核电有限公司 阳江 529500

4.中广核苍南核电有限公司 温州 325800

5.长春工业大学化学工程学院 长春 130012

Preparation of Nano Ag0@ACF Material and Its Adsorption Performance for Gaseous Iodine

ZHAN Jie1, CHEN Xiaojiang2, ZOU Zhili3, SU Xingdong1, XIE Shiyu4, JIANG Liang2, WANG Jinling5, WANG Lielin,2

1.China Nuclear Power Technology Research Institute, Shenzhen 518028, China

2.Innovation Center of Nuclear Environmental Safety Technology, Southwest University of Science and Technology, Mianyang 621010, China

3.Yangjiang Nuclear Power Co., Ltd., Yangjiang 529500, China

4.CGN Cangnan Nuclear Power Co., Ltd., Wenzhou 325800, China

5.School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China

通讯作者: 王烈林,教授,wanglielin@swust.edu.cn,研究方向为核废物与环境安全

责任编辑: 黄青

收稿日期: 2024-08-15   修回日期: 2025-01-28  

基金资助: 国家自然科学基金(21101129)
国家自然科学基金(41502028)
深圳市科技创新委员会技术攻关重点项目(JSGG20200924171000001)
四川省自然科学基金(2022NSFSC0252)
深圳市国防科工办“揭榜挂帅”行动(JBGS2024-431-004)

Corresponding authors: WANG Lielin, Tel: 15882867099, E-mail:wanglielin@swust.edu.cn

Received: 2024-08-15   Revised: 2025-01-28  

Fund supported: National Natural Science Foundation of China(21101129)
National Natural Science Foundation of China(41502028)
Shenzhen Municipal Science and Technology Innovation Commission Key Technology R D Project(JSGG20200924171000001)
Sichuan Province Natural Science Foundation(2022NSFSC0252)
Announcement and Leadership Action Project(JBGS2024-431-004)

作者简介 About authors

詹 杰,男,1993年生,硕士生

摘要

以活性炭纤维为模板,用水热改性和原位自还原方法制备活性炭纤维负载纳米银Ag0@ACF吸附材料,并使用SEM-EDS、XRD、BET和XPS等手段对其表征,研究了这种材料对气态碘的吸附性能。结果表明:纳米银均匀地负载在微孔活性炭纤维材料中成为高比表面积、高反应活性的Ag0@ACF复合材料。4%Ag0@ACF材料对气态单质碘和甲基碘的吸附容量分别为2.25 g/g和0.48 g/g,分别比活性炭纤维材料提高2.5倍和3.5倍。随着改性剂浓度的提高Ag0@ACF对气态碘的吸附容量随之提高;在130℃,改性材料的吸附性能仍较为优异。对这种材料的吸附动力学和机理分析表明,Ag0@ACF吸附气态碘时纳米银与碘发生化学反应生成了稳定的AgI,即发生了稳定的化学吸附行为;高反应活性的纳米Ag0与丰富多孔结构的活性炭纤维材料结合,实现了对气态碘的高速和高效捕集。

关键词: 无机非金属材料; 放射性气态碘; Ag0@ACF; 水热改性; 原位自还原; 化学吸附

Abstract

Radioactive gaseous iodine produced during the operation of nuclear reactors needs to be handled safely and efficiently. In this study, a nano-silver loading activated carbon fiber material Ag0@ACF was successfully synthesized by hydrothermal modification and in situ reduction methods, and then the Ag0@ACF material was characterized by SEM-EDS, XRD, BET, and XPS to evaluate the iodine adsorption performance of Ag0@ACF. The results show that the nano-silver particulates were uniformly loaded on the microporous activated carbon fiber material, the acquired Ag0@ACF composite exhibited high specific surface area and high reactivity. Its adsorption capacity of gaseous elemental iodine and methyl iodine reached 2.25 g/g and 0.48 g/g, respectively, the adsorption performance was increased by 2.5 times and 3.5 times in contrast to the blank activated carbon fiber material. With the increase of modifier concentration, the adsorption capacity of Ag0@ACF for gaseous iodine increases. The material still showed excellent adsorption performance (I2: 2.30 g/g, CH3I: 0.51 g/g) even at 130 oC. Through the analysis of material adsorption kinetics and mechanisms, the adsorption of Ag0@ACF materials for gaseous iodine is a chemical reaction between nano-silver and iodine to form a stable AgI, which is a stable chemical adsorption behavior. The highly reactive silver nanoparticles combined with the rich porous structure of activated carbon fiber materials can achieve rapid and efficient capture of gaseous iodine.

Keywords: inorganic non-metallic materials; radioactive gaseous iodine; Ag0@ACF; hydrothermal modification; in situ self-reduction; chemical adsorption

PDF (9743KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

詹杰, 陈小江, 邹之利, 苏兴东, 谢世宇, 江亮, 王金铃, 王烈林. 纳米Ag0@ACF材料的制备及其对气态碘的吸附性能[J]. 材料研究学报, 2025, 39(9): 673-682 DOI:10.11901/1005.3093.2024.336

ZHAN Jie, CHEN Xiaojiang, ZOU Zhili, SU Xingdong, XIE Shiyu, JIANG Liang, WANG Jinling, WANG Lielin. Preparation of Nano Ag0@ACF Material and Its Adsorption Performance for Gaseous Iodine[J]. Earth Science, 2025, 39(9): 673-682 DOI:10.11901/1005.3093.2024.336

对核能发展中放射性核废料的处置,受到了严重的关注[1]。核裂变产生的放射性碘,威胁人类的健康和生态环境[2]。气态单质和有机(以甲基碘为主)放射性碘[3],其半衰期较长(129I的半衰期约为1.7 × 107 a)、生物毒性大和易挥发。吸入气态放射性碘使人体代谢紊乱、智力低下和罹患甲状腺癌,因此必须对其处理[4,5]

处理放射性气态碘的方法,有液体吸收法和固体吸附法[6]。液体吸收法,是使放射性碘气体通过吸附液发生化学反应以使其除去,此法产生大量的放射性液体废物且捕集效率较低。固体吸附,是用较大比表面积的吸附材料对放射性气体进行物理和化学吸附[7]。常见的固体吸附材料,有活性炭(煤基活性炭、活性炭纤维等)[8]、金属有机框架材料(ZIF-8)[9]、气凝胶材料(二氧化硅气凝胶、金属硫化物气凝胶)[10]、金属改性陶瓷(Al2O3)[11]以及金属材料(Ag、Cu等)[12]。活性炭纤维(ACF)的比表面积大和孔道结构发达,吸附活性位点较多。上海纺织科学院研制的核级活性炭纤维,对放射性单质碘的吸附效率为99.7%,对放射性甲基碘的吸附效率为99.6%[13]。研究表明,粘胶基活性炭纤维对单质碘、甲基碘的吸附容量分别为1.36 g/g和0.2 g/g。对活性炭纤维进行改性,可提高其对气态碘的吸附性能[14]。Ampelogova等[15]的研究表明,busofite型炭纤维对甲基碘的吸附容量可达0.25 g/g。Matyáš和Engler[16]研发的二氧化硅高附银量的复合材料对放射性碘分子吸附可达0.44 g/g,吸附后其结构稳定。叶明吕等[17]发现,附银丝光沸石对气态碘的吸附性能稳定,水蒸气和氮氧化物不影响吸附性能。附银吸附材料,是通过浸渍将银离子负载到多孔材料中,银离子与气态碘发生反应实现对气体的捕集,捕集后生成的碘化银产物的稳定性较高[18];目前,附银材料对碘的吸附容量小、吸附效率和利用率较低。纳米金属材料的比表面积较大、反应活性和选择性较高,是处理放射性废气的新型材料[19]。为了提高银对碘的吸附性能,可将银离子还原成纳米银以增加吸附活性位点。但是,在纳米银材料的制备过程中出现的团聚使其对碘的吸附性能降低[20]。使用大比表面积的基体材料负载纳米金属,可将纳米金属均匀分散在基体材料中制备出高比表面积的吸附材料。本文用原位自还原制备纳米Ag0@ACF材料,研究其对气态碘的吸附性能。

1 实验方法

1.1 实验用材料和仪器设备

实验用材料和试剂:活性炭纤维(ACF)(以棉纤维为原料、ZnCl2为活化剂,用自黏结成形法制备,活化温度为600 ℃,成型压强10 MPa,有丰富的官能团,以微孔为主,比表面积为1743 m2/g,平均孔径为2.17 nm)。硝酸银(AgNO3)、单质碘(I2)、甲基碘(CH3I)。均为分析纯。

实验用仪器:电子天平;高温烘箱;升降烧结炉;场发射扫描电镜SEM(Ultra 55型),能量色散光谱仪EDS(EDX1800B型);X射线衍射分析仪XRD(BRUKER D8型);Quantachrome Autosorb-iQ全自动比表面和孔径分析仪(BET);X射线光电子能谱仪(XPS)。

用SEM观测材料的表面形貌,结合EDS定性和定量分析材料的元素组成及其分布。测试XRD谱的扫描范围为10°~80°,步长为0.02°,扫描时间为0.05 s。用全自动比表面和孔径分析仪测定材料的孔径分布和N2吸附-解吸等温线;用XPS分析材料中元素的价态。

1.2 活性炭纤维负载纳米银Ag0@ACF的制备

用水热合成法和高温真空自还原法制备Ag0@ACF复合材料。将不同浓度的AgNO3溶液(1%, 2%, 3%, 4%, 5%)和活性炭纤维ACF(5 cm × 7 cm)放入容积为100 mL的反应器(PTFE)中,然后将反应器放入80 ℃烘箱中进行水热反应24 h。将浸渍好的ACF材料在80 ℃烘干5 h。将改性后的ACF置于250 ℃的高温烧结炉(GSL-1750-S)中在4 h内将银离子还原为纳米银(还原剂为ACF自生炭源),制备出Ag0@ACF复合材料。将不同改性剂浓度的Ag0@ACF命名为xAg0@ACF (1%Ag0@ACF, 2%Ag0@ACF, 3%Ag0@ACF, 4%Ag0@ACF, 5%Ag0@ACF),其中x为改性剂浓度。

1.3 对气态单质碘和甲基碘吸附性能的测定

因为放射性碘危害人体[19],使用气态非放射性单质碘和甲基碘进行吸附实验。利用单质碘和甲基碘易于升华和汽化的原理,分别将1 g的单质碘(I2)和1 mL甲基碘(CH3I)放入高度为5 cm、直径为2 cm的圆柱形坩埚里面并盖上砂芯,在砂芯上面放置三块5 mm立方体的Ag0@ACF材料,再将其移入密闭反应容器内(图1),最后将容器置入80 ℃恒温箱中反应4 h。根据反应前后材料质量的变化可计算对单质碘和甲基碘的吸附容量

q=m1-m0m0

图1

图1   实验装置示意图

Fig.1   Experimental setup diagram


式中q为单位质量碘的吸附容量(g/g),m0为吸附剂Ag0@ACF的质量(g),m1为Ag0@ACF吸附碘后的质量(g)。实验中使用三块平行样,材料的吸附量为其结果的平均值。

2 结果和讨论

2.1 Ag0@ACF吸附材料的结构

图2给出了ACF和Ag0@ACF复合材料的SEM-EDS图像。可以看出,活性炭纤维材料为束状纤维结构,表面光滑无杂质;Ag0@ACF材料的表面良好均匀地附着粒径约为百纳米的颗粒物质。为了测定颗粒物质的元素组成,对Ag0@ACF进行了EDS能谱扫描。图2a给出了ACF的SEM图像,图2b给出了Ag0@ACF的SEM图像。可以看出,ACF的纤维棒表面没有杂质。将ACF改性还原后Ag0@ACF的微观形貌发生了一些变化:许多纳米级颗粒物质均匀地分散在纤维棒表面。图2c~f给出了改性材料的能谱扫描,分析后可得到元素分布及含量。结果表明,改性材料中除了碳元素,还有银元素。元素的映射图像与SEM的图像一一对应,分布均匀。碳元素的含量最高,银元素的含量较低,因为材料的基体是ACF(碳和银的峰值信号清晰)。EDS结果表明,负载在ACF上的颗粒物质是单质银,纳米颗粒清晰可见。

图2

图2   ACF和Ag0@ACF复合材料的SEM照片以及Ag0@ACF的EDS-Mapping能谱

Fig.2   SEM images of ACF (a) and Ag0@ACF composites (b), and the corresponding EDS-Mapping spectra of Ag0@ACF (c-f)


图3给出了ACF和Ag0@ACF材料的XRD谱。XRD谱表明,ACF为无定型炭结构,特征衍射峰的峰强很宽[21]。Ag0@ACF出现了单质银的特征衍射峰,分别在2θ为38.1°、44.3°、64.4°、77°,表明Ag0@ACF负载的颗粒物质是单质银[22]。在ACF材料的改性过程中将银离子吸附在其表面和孔道结构中,在高温烧结过程中ACF自身提供炭源作为还原剂,银离子在活性炭纤维原位自还原为纳米银颗粒,表现出较高的稳定性。

图3

图3   ACF、Ag0@ACF的XRD谱

Fig.3   XRD patterns of ACF and Ag0@ACF


用N2吸附-脱附法分析了材料的孔径分布,根据BET公式计算了材料的比表面积。用不同浓度的硝酸银制备的Ag0@ACF吸附材料比表面积及孔容列于表1,N2吸脱附等温曲线如图4a所示。可以看出,ACF和Ag0@ACF在相对压力较小的一段区间内出现很高的吸附速率,表明其具有明显的H1滞后环特征,属于典型的微孔等温吸附曲线;Ag0@ACF仍保持了ACF材料的微孔结构特征。由图4bc可见,用BET测出的Ag0@ACF材料的比表面积和孔容均明显减小,因为银颗粒堵塞了ACF结构中的孔道[23]

表1   Ag0@ACF的比表面积和孔容

Table 1  Specific surface area and pore volume of Ag0@ACF

AdsorbentSpecific surface area / m2·g-1Pore volume /cc·g-1
ACF18160.842
1%Ag0@ACF15620.68
2%Ag0@ACF14030.642
3%Ag0@ACF12870.578
4%Ag0@ACF10950.492
5%Ag0@ACF9150.421

新窗口打开| 下载CSV


图4

图4   N2的吸脱附曲线、ACF的孔径分布和5%Ag0@ACF的孔径分布

Fig.4   N2 adsorption and desorption curves (a), pore size distribution of ACF (b) and 5%Ag0@ACF (c)


2.2 改性剂浓度对材料吸附气态碘性能的影响

图5ab显示了改性剂浓度对Ag0@ACF吸附碘性能的影响。改性剂的浓度分别为1%、2%、3%、4%、5%,在密闭反应釜中反应4 h。对气态单质碘和甲基碘吸附容量表明,随着改性剂浓度的提高材料对单质碘和甲基碘的吸附容量都随之提高。改性剂浓度为4%时吸附容量最大为2.25 g/g;浓度为5%时对单质碘的吸附容量明显降低,因为在ACF上负载过量纳米银团聚堵塞了孔道,使材料的比表面积减小而影响了材料的物理吸附。Ag0@ACF对甲基碘的吸附主要是化学吸附,改性剂的浓度越高吸附性能越高;浓度为4%~5%时的饱和吸附容量约为0.48 g/g。对Ag0@ACF吸附性能的分析表明,4%Ag0@ACF的吸附性能较为优异;比ACF(物理吸附)对单质碘和甲基碘吸附容量分别提高近2.5倍和3.5倍。纳米银的高反应活性,提高了材料对气态碘的化学吸附。

图5

图5   Ag0@ACF材料对单质碘及甲基碘的吸附容量

Fig.5   Adsorption capacity of Ag0@ACF materials for elemental iodine (a) and methyl iodide (b)


2.3 吸附时间对气态碘吸附性能的影响

吸附时间对4%Ag0@ACF吸附气态碘的影响,如图6所示。可以看出,ACF对气态碘的吸附可分为三个阶段。吸附时间为0~20 min效果明显,迅速达到很高的吸附容量,属于高速吸附阶段。Ag0@ACF有丰富的活性位点,在较短的时间内就能与碘结合。吸附时间为20~60 min吸附速度明显降低,属于缓慢吸附阶段。时间超过60 min,吸附逐渐趋于平衡,吸附容量不随时间变化,属于平衡吸附阶段。结果表明,Ag0@ACF对气态碘的吸附平衡时间为60 min,单质碘的最大吸附容量约为2.25 g/g,甲基碘的最大吸附容量为0.48 g/g。改性材料的吸附性能优于其他吸附材料(表2),吸附速率和饱和吸附量较高;Ag0@ACF吸附材料对气态碘的高速吸附的性能,可能取决于纳米银较高的反应活性。

图6

图6   吸附时间对单质碘及甲基碘吸附性能的影响

Fig.6   Effect of adsorption time on the performance for elemental iodine (a) and methyl iodide (b)


表2   不同吸附材料对气态碘的吸附容量

Table 2  Adsorption capacity of different adsorbent materials for gaseous iodine

AdsorbentAdsorption time / hAdsorption capacity of elemental iodine/methyl iodide / g·g-1
Th-UiO-66-MOFs[24]50.96/-
MOF membrane[25]360.6/-
NaY-NH4F-Bi2S3[26]100.49/-
Cu-BTC@PES[27]750.63/-
Cu0-SBA-15[12]10.95/-
ACF-TEDA[14]41.85/0.4
Ag0@ACF(this work)12.25/0.48

新窗口打开| 下载CSV


2.4 温度对吸附气态碘性能的影响

图7a给出了4%Ag0@ACF在不同温度的吸附气态碘的性能。可以看出,随着温度的提高吸附容量随之提高。其主要原因是,ACF具有优异的微孔结构。在高温(130 ℃)下吸附质向吸附剂孔径内扩散加快;同时,较高的温度提高了反应的活性而使吸附量提高[28]。对气态单质碘的最高吸附容量达到2.3 g/g,对气态甲基碘的吸附容量可达0.51 g/g。在高温下Ag0@ACF对气态碘的吸附稳定性仍然较高,表明这种材料可在较高的温度吸附气态放射性碘。

图7

图7   吸附温度对单质碘及甲基碘吸附性能的影响

Fig.7   Effect of temperatures on the adsorption performance for elemental iodine (a) and methyl iodide (b)


3 吸附机理

为了揭示Ag0@ACF对气态碘的吸附机理,采用准一阶和准二阶动力学模型[5]

ln(qe-qt)=lnqe-k1t
tqt=1k2qe+1qet

分析了材料的吸附动力学。式中qe(mg/g)为吸附平衡时的饱和吸附容量,qt (mg/g)为吸附时间t下的吸附容量,常数k1(min-1)和k2(mg/g·min-1)分别为准一阶速率、准二阶速率。

图8给出了Ag0@ACF材料对气态碘吸附的两种模型动力学曲线。图8ab给出了气态单质碘吸附的动力学模型曲线,图8cd给出了气态甲基碘吸附的动力学模型曲线,表3列出了动力学参数。气态单质碘吸附的准一级动力学模型、准二级吸附动力学模型拟合的线性相关系数分别为R12 = 0.19、R22 = 0.99;气态甲基碘吸附的拟合线性相关系数分别为R32 = 0.13、R42 = 0.99。Ag0@ACF材料对单质碘和甲基碘的吸附过程更符合准二阶动力学模型,得到的最大吸附容量2.22 g/g(单质碘)、0.45 g/g(甲基碘)与实验结果基本吻合。Ag0@ACF对气态碘(I2、CH3I)吸附动力学的研究表明,这种材料对气态碘的吸附主要为化学吸附。

图8

图8   气态单质碘和气态甲基碘的吸附准一阶模型拟合曲线和准二阶模型拟合曲线

Fig.8   Quasi-first-order model fitting curves (a) and quasi-second-order model fitting curves (b) for elemental iodine adsorption, and quasi-first-order model fitting curves (c) and quasi-second-order model fitting curves (d) for methyl iodide adsorption


表3   Ag0@ACF对气态碘的吸附动力学参数

Table 3  Kinetic parameters of Ag0@ACF for gaseous iodine

Adsorption kinetics of gaseous iodine on Ag0@ACFPseudo first-orderPseudo second-order
qeK1R2qeK2R2
I21.01230.0420.192.33041.74550.99
CH3I0.11470.52890.130.38302.32680.99

新窗口打开| 下载CSV


分析和表征了吸附后单质碘(Ag0@ACF-I2)、吸附后甲基碘(Ag0@ACF-CH3I)样品的微观形貌。图9给出了吸附碘样品的SEM-EDS图。分析结果表明,Ag0@ACF表面生长了较大的颗粒物,粒径尺寸为微米量级,分布均匀;与未吸附材料相比,表面的纳米级颗粒粒径明显增大。对吸附后样品的表面颗粒EDS能谱分析表明,其主要成分为Ag和I,即把气态碘较好的捕集到材料中。

图9

图9   材料吸附单质碘和甲基碘的SEM-EDS图

Fig.9   SEM-EDS plots of adsorbed elemental iodine (a) and adsorbed methyl iodine (b)


图10a给出了吸附前后材料的XRD谱。Ag0@ACF吸附气态I2和CH3I样品在谱中2θ为22.3°、23.6°、25.3°、39.2°、46.4°均出现了衍射峰,对应AgI的特征峰[29]。这种材料吸附气态单质碘和甲基碘均形成AgI,与吸附动力学分析给出的这种材料的吸附过程属于化学吸附一致。根据XPS分析了ACF、Ag0@ACF、吸附气态碘(I2、CH3I)样品的元素和价态。图谱分析数据表示在图10b中。在Ag0@ACF中检测出Ag元素,得到了Ag 3d的一组双峰谱;吸附气态碘样品不仅出现了银的双峰谱,还出现了I 3d的一组双峰谱,表明Ag0@ACF吸附了碘。图10c显示,I 3d在结合能为619、630.4 eV处出现了双峰谱,是碘离子典型的特征双峰谱(I-)[30]。在图10d过程的能谱中发现Ag 3d在结合能367.7、373.7 eV处出现了双峰谱;吸附后材料Ag的能谱明显向高能区偏移,表明吸附气态碘后样品中银价态为+1价[31]。对吸附气态碘前后物相结构表征以及价态分析表明,Ag0@ACF对气态碘的吸附是气态碘与银发生反应形成了稳定AgI的化学吸附,化学反应为

2Ag0+I22AgI
Ag0+CH3IAgI

图10

图10   吸附碘样品的XRD谱和XPS能谱、吸附碘I 3d双峰谱对比、吸附碘Ag 3d双峰谱对比

Fig.10   Comparison of XRD diffraction of samples after adsorption of iodine (a), XPS energy spectrum of samples after adsorption of iodine (b), comparison of I 3d bimodal spectrum after adsorption of iodine (c) and comparison of Ag 3d bimodal spectrum after adsorption of iodine (d)


4 结论

(1) 进行水热改性可将银离子负载在高比表面积ACF材料的微孔中。利用活性炭纤维为炭源在纤维原位将银离子自还原为纳米银,可将高反应活性的纳米银负载在高比表面积活性炭纤维材料上制备纳米Ag0@ACF改性材料。活性炭纤维材料(ACF)有丰富的多孔结构,其对气态碘的吸附主要是物理吸附,吸脱附速率较高和容易解吸。

(2) 纳米Ag0@ACF对气态碘的吸附性能较高,随着改性剂浓度的提高其静态吸附性能随之提高。随着温度的提高这种材料的吸附性能随之提高。

(3) Ag0@ACF对气态碘的吸附符合化学吸附准二级动力学模型(R2 = 0.99)。Ag0@ACF对碘的吸附机制,是气态碘和银发生了化学反应生成了稳定碘化银,实现了对气态放射性碘的高效稳定吸附。

参考文献

Li B Y, Dong X L, Wang H, et al.

Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps

[J]. Nat. Commun., 2017, 8(1): 485

DOI      PMID      [本文引用: 1]

Effective capture of radioactive organic iodides from nuclear waste remains a significant challenge due to the drawbacks of current adsorbents such as low uptake capacity, high cost, and non-recyclability. We report here a general approach to overcome this challenge by creating radioactive organic iodide molecular traps through functionalization of metal-organic framework materials with tertiary amine-binding sites. The molecular trap exhibits a high CH3I saturation uptake capacity of 71 wt% at 150 degrees C, which is more than 340% higher than the industrial adsorbent Ag-0@MOR under identical conditions. These functionalized metal-organic frameworks also serve as good adsorbents at low temperatures. Furthermore, the resulting adsorbent can be recycled multiple times without loss of capacity, making recyclability a reality. In combination with its chemical and thermal stability, high capture efficiency and low cost, the adsorbent demonstrates promise for industrial radioactive organic iodides capture from nuclear waste. The capture mechanism was investigated by experimental and theoretical methods.

Maugeri E A, Neuhausen J, Eichler R, et al.

Adsorption of volatile polonium and bismuth species on metals in various gas atmospheres: Part I – Adsorption of volatile polonium and bismuth on gold

[J]. Radiochim. Acta, 2016, 104(11): 757

[本文引用: 1]

Liu R, Zhang W, Chen Y T, et al.

Adsorption of iodine by ZIF materials

[J]. J. Inorg. Mater., 2020, 35(3): 345

DOI      [本文引用: 1]

Radioactive iodine present in nuclear waste water streams is harmful to human health and environment. Since iodine will exist in multiple states in water, accurate quantification of the total iodine content in any given sample is very difficult. The development of a method for determining the total iodine content accurately in water, and finding materials which can effectively remove the iodine are of particular importance. Here, a method was proposed for determining the concentration of iodine by cyclohexane extraction. And two kinds of zeolite imidazole skeleton materials ZIF-8 and ZIF-67 were prepared to be used as adsorbents to effectively adsorb iodine from an aqueous environment. Samples ZIF-8 and ZIF-67 were characterized by different methods. The results show that these two kinds of materials have good chemical structure and large specific surface area. The results of adsorption kinetics experiments show that the adsorption of ZIF-8 and ZIF-67 materials to iodine can reach the equilibrium within 60 min. The iodine adsorption behaviors of both materials are fitted with the pseudo second-order kinetic model. Their adsorption thermodynamics indicate linear adsorption behavior for iodine in the case of both zeolites. Adsorption capacities of ZIF-8 and ZIF-67 for iodine could reach as high as 2000 mg·g -1.

刘 蓉, 张 炜, 陈元涛 .

ZIF材料对碘的吸附特性研究

[J]. 无机材料学报, 2020, 35(3): 345

[本文引用: 1]

Evron J M, Esfandiari N H, Papaleontiou M.

Cancer incidence and mortality following treatment of hyperthyroidism with radioactive iodine

[J]. Curr. Opin. Endocrinol. Diabetes Obes., 2020, 27(5): 323

DOI      PMID      [本文引用: 1]

Hyperthyroidism is a commonly encountered clinical issue. Radioactive iodine is one of the treatment modalities employed over the last 80 years. Prior studies are conflicting as to whether radioactive iodine is associated with an increased risk of subsequent malignancy and associated mortality. The present article reviews recent publications on this subject.Two recent studies make meaningful contributions to the existing literature; however, data remain inconsistent. The first, conducted using the Clalit Health Services database, evaluated solid tumor incidence after radioactive iodine and found no association with increased risk of solid tumor malignancy. The second, which is an updated analysis of the Cooperative Thyrotoxicosis Therapy Follow-up Study, concluded that there is a dose-dependent increased risk of solid tumor mortality using a novel method of estimating organ-specific radiation exposure.In patients with hyperthyroidism, radioactive iodine is a popular and effective treatment option. Prior studies reach conflicting conclusions on the potential relationship between radioactive iodine and both subsequent cancer incidence and mortality. We review recent publications that add to our understanding of this important clinical question.

Zhu Y Q, Chen K W, Zhang J L, et al.

Preparation and adsorption properties of Cu-Zn@C with ZIF-8 template

[J]. China Powder Sci. Technol., 2022, 28(3): 50

[本文引用: 2]

朱玉琦, 陈凯伟, 张佳莉 .

以ZIF-8为模板的Cu-Zn@C制备与吸附性能

[J]. 中国粉体技术, 2022, 28(3): 50

[本文引用: 2]

Ma Y, Liu Q, Dong L, et al.

Reviews on methods for air-bone radioiodine capture

[J]. J. Shanxi Univ. (Nat. Sci. Ed.), 2017, 40(3): 515

[本文引用: 1]

马 英, 刘 群, 董 磊 .

气态放射性碘的捕集方法综述

[J]. 山西大学学报(自然科学版), 2017, 40(3): 515

[本文引用: 1]

Riley B J, Vienna J D, Strachan D M, et al.

Materials and processes for the effective capture and immobilization of radioiodine: a review

[J]. J. Nucl. Mater., 2016, 470: 307

[本文引用: 1]

Sun H X, La P Q, Zhu Z Q, et al.

Capture and reversible storage of volatile iodine by porous carbon with high capacity

[J]. J. Mater. Sci., 2015, 50(22): 7326

[本文引用: 1]

Hughes J T, Sava D F, Nenoff T M, et al.

Thermochemical evidence for strong iodine chemisorption by ZIF-8

[J]. J. Am. Chem. Soc., 2013, 135(44): 16256

DOI      PMID      [本文引用: 1]

For the first time, using aqueous solution calorimetry, we clearly identify the chemisorption of an unusually strong iodine charge-transfer (CT) complex within the cages of a metal-organic framework. Specifically, we studied the sorption of iodine gas in zeolitic imidazolate framework-8 (ZIF-8, Zn(2-methylimidazolate)2). Two iodine-loaded ZIF-8 samples were examined. The first, before thermal treatment, contained 0.17 I2/Zn on the surface and 0.59 I2/Zn inside the cage. The second sample was thermally treated, leaving only cage-confined iodine, 0.59 I2/Zn. The energetics of iodine confinement per I2 (relative to solid I2) in ZIF-8 are ΔHads = -41.47 ± 2.03 kJ/(mol I2) within the cage and ΔHads = -18.06 ± 0.62 kJ/(mol I2) for surface-bound iodine. The cage-confined iodine exhibits a 3-fold increase in binding energy over CT complexes on various organic adsorbents, which show only moderate exothermic heats of binding, from -5 to -15 kJ/(mol I2). The ZIF-8 cage geometry allows each iodine atom to form two CT complexes between opposing 2-methylimidazolate linkers, creating the ideal binding site to maximize iodine retention.

Soelberg N R, Garn T G, Greenhalgh M R, et al.

Radioactive iodine and krypton control for nuclear fuel reprocessing facilities

[J]. Sci. Technol. Nucl. Install., 2013, 2013: 702496

[本文引用: 1]

Wu L, Sawada J A, Kuznicki D B, et al.

Iodine adsorption on silver-exchanged titania-derived adsorbents

[J]. J. Radioanal. Nucl. Chem., 2014, 302(1): 527

[本文引用: 1]

He X M, Chen L, Xiao X, et al.

Improved utilization of Cu0 for efficient adsorption of iodine in gas and solution by mesoporous Cu0-SBA-15 via solvothermal reduction method

[J]. Chem. Eng. J., 2023, 462: 142175

[本文引用: 2]

Yue L Q.

Study on the adsorption and desorption performance of radioactive methyl iodine by modified activated carbon

[D]. Beijing: China Academy of Engineering Physics, 2013

[本文引用: 1]

岳龙清.

改性活性炭对放射性甲基碘吸附与解吸性能的研究

[D]. 北京: 中国工程物理研究院, 2013

[本文引用: 1]

Wang L L, Liu F, Zhan J, et al.

Adsorptive removal of gaseous methyl iodide by triethylenediamine modified activated carbon fiber

[J]. At. Energy Sci. Technol., 2023, 57(9): 1800

[本文引用: 2]

王烈林, 刘 峰, 詹 杰 .

三乙烯二胺改性活性炭纤维对气态甲基碘吸附研究

[J]. 原子能科学技术, 2023, 57(9): 1800

DOI      [本文引用: 2]

气态甲基碘是核设施运行过程中难以处理的放射性气态产物之一。本文通过水热法制备了三乙烯二胺(TEDA)改性高比表面积粘胶基活性炭纤维材料,并开展了改性材料气态甲基碘吸附研究,通过BET、SEM-EDS、FT-IR、TGA、放射性测试方法对材料进行了表征和吸附性能分析。静态气态碘吸附结果表明,水热改性材料对单质碘吸附量提高了36%,达到1.84 g/g,甲基碘吸附量达到400 mg/g。甲基碘动态吸附实验表明,改性材料具有较高的吸附效率;随着温度和湿度的增加,吸附效率略有降低;环境湿度对气态甲基碘的吸附性能影响较大。温度30 ℃、相对湿度95%条件下的穿透测试表明,材料在12 h内未出现穿透,改性材料展现出优异的甲基碘吸附性能。放射性甲基碘吸附实验显示,水热改性材料吸附效率接近95%,超过未改性材料的3倍;TEDA改性活性炭纤维明显提高了对气态甲基碘的化学吸附能力。水热法TEDA改性粘胶基活性炭纤维材料表现出优异气态甲基碘吸附性能。

Ampelogova N I, Kritskii V G, Krupennikova N I, et al.

Carbon-fiber adsorbent materials for removing radioactive iodine from gases

[J]. At. Energy, 2002, 92(4): 336

[本文引用: 1]

Matyáš J, Engler R K.

Assessment of methods to consolidate iodine-loaded silver-functionalized silica aerogel

[R]. Richland: Pacific Northwest National Laboratory, 2013

[本文引用: 1]

Ye M L, Tang J J, Ding X, et al.

A study of the adsorption properties of the silver nitrate impregnated mordenite for airborne radioiodine

[J]. J. Nucl. Radiochem., 1991, 13(3): 169

[本文引用: 1]

The silver nitrate impregnated mordenite is prepared, the adsorption characteristics of this inorganic adsorbent for airborne radioiodine is examined. The effects of various operating conditions on decontamination factors (DF) of radioiodine are investigated. Results show that this adsorbent has good adsorption properties for both elemental iodine and methyl iodine, the adsorption capacity is up to 196.6mg(Ⅰ)/g(AgX), the effects of water content and NOx in feed gases on DF are very small. The adsorbent can be used to remove radioiodine from nuclear fuel reprocessing off-gases and from air cleaning systems of nuclear reactors.

叶明吕, 唐静娟, 丁 旭 .

附银丝光沸石对气载放射性碘的吸附特性的研究

[J]. 核化学与放射化学, 1991, 13(3): 169

[本文引用: 1]

Xiong W, Cao Q, Wang H J, et al.

Study on dynamic adsorption of gaseous iodine by silver loaded mordenite and alumina

[J]. Nucl. Power Eng., 2019, 40(1): 131

[本文引用: 1]

熊 伟, 曹 骐, 王海军 .

载银丝光沸石和载银氧化铝对气态碘的吸附研究

[J]. 核动力工程, 2019, 40(1): 131

[本文引用: 1]

Zhao G X, Li J X, Ren X M, et al.

Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management

[J]. Environ. Sci. Technol., 2011, 45(24): 10454

[本文引用: 2]

Jia L, Liu Y, Zhang G H, et al.

Research progress in the removal of radioactive iodonucleoid from the water body

[J]. Ind. Water Treat., 2015, 35(7): 10

[本文引用: 1]

贾 麟, 刘 阳, 张光辉 .

去除水体中放射性碘核素的研究进展

[J]. 工业水处理, 2015, 35(7): 10

[本文引用: 1]

Qiao Z J, Li J J, Zhao N Q, et al.

Pore size and surface properties of activated carbon fibres modified by high temperature treatment

[J]. New Carbon Mater., 2004, 19(1): 53

[本文引用: 1]

乔志军, 李家俊, 赵乃勤 .

高温热处理对活性炭纤维微孔及表面性能的影响

[J]. 新型炭材料, 2004, 19(1): 53

[本文引用: 1]

Mao P, Liu Y, Jiao Y, et al.

Enhanced uptake of iodide on Ag@Cu2O nanoparticles

[J]. Chemosphere, 2016, 164: 396

[本文引用: 1]

Mao P, Qi B B, Liu Y, et al.

AgII doped MIL-101 and its adsorption of iodine with high speed in solution

[J]. J. Solid State Chem., 2016, 237: 274

[本文引用: 1]

Li Z J, Ju Y, Lu H J, et al.

Cover feature: boosting the iodine adsorption and radioresistance of Th-UiO-66 MOFs via aromatic substitution (Chem. Eur. J. 4/2021)

[J]. Chem.-A Eur. J., 2021, 27(4): 1162

[本文引用: 1]

Li M, Yuan G Y, Zeng Y, et al.

Flexible surface-supported MOF membrane via a convenient approach for efficient iodine adsorption

[J]. J. Radioanal. Nucl. Chem., 2020, 324: 1167

[本文引用: 1]

Jiang M, Zhu L, Zhao Q, et al.

Novel synthesis of NaY-NH4F-Bi2S3 composite for enhancing iodine capture

[J]. Chem. Eng. J., 2022, 443: 136477

[本文引用: 1]

Zhao Q, Zhu L, Lin G H, et al.

Controllable synthesis of porous Cu-BTC@polymer composite beads for iodine capture

[J]. ACS Appl. Mater. Interfaces, 2019, 11: 42635

[本文引用: 1]

Zhu D D, Hu Y C, Yu H D, et al.

The study of activated carbon fiber's capability of adsorbing precious metal ion

[J]. Contemp. Chem. Ind., 2008, 37(2): 136

[本文引用: 1]

朱冬冬, 胡玉才, 于会弟 .

活性炭纤维对贵金属离子吸附性能的研究

[J]. 当代化工, 2008, 37(2): 136

[本文引用: 1]

Chen X J, Wang L L, Ding C C, et al.

Highly efficient removal of radioactive iodine anions by nano silver modified activated carbon fiber

[J]. Appl. Surf. Sci., 2024, 643: 158644

[本文引用: 1]

Li H L, Li Y.

Ag-doped silicon-based nanospheres for the efficient capture and remove of iodide anions from solutions

[J]. Appl. Surf. Sci., 2019, 496: 143707

[本文引用: 1]

Ye H F, Lin H L, Cao J, et al.

Enhanced visible light photocatalytic activity and mechanism of BiPO4 nanorods modified with AgI nanoparticles

[J]. J. Mol. Catal., 2015, 397A: 85

[本文引用: 1]

/