Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (10): 773-780    DOI: 10.11901/1005.3093.2016.779
  研究论文 本期目录 | 过刊浏览 |
电沉积非晶态Co-W合金镀层在碱性溶液中的电催化析氢研究
王玉, 盛敏奇(), 翁文凭, 许继芳, 曹孟秋
苏州大学沙钢钢铁学院 苏州 215021
Electrocatalytic Hydrogen Evolution Reaction on Electrodeposited Amorphous Co-W Alloy Coatings in Alkaline Solution
Yu WANG, Minqi SHENG(), Wenping WENG, Jifang XU, Mengqiu CAO
Shagang School of Iron and Steel, Soochow University, Suzhou 215021, China
引用本文:

王玉, 盛敏奇, 翁文凭, 许继芳, 曹孟秋. 电沉积非晶态Co-W合金镀层在碱性溶液中的电催化析氢研究[J]. 材料研究学报, 2017, 31(10): 773-780.
Yu WANG, Minqi SHENG, Wenping WENG, Jifang XU, Mengqiu CAO. Electrocatalytic Hydrogen Evolution Reaction on Electrodeposited Amorphous Co-W Alloy Coatings in Alkaline Solution[J]. Chinese Journal of Materials Research, 2017, 31(10): 773-780.

全文: PDF(1074 KB)   HTML
摘要: 

利用恒电流直流电沉积方法在Cu基底表面制备了Co-W合金镀层,当镀液中WO42-浓度≥0.075 mol/L时镀层为非晶态结构。电化学研究表明,非晶态Co-W合金镀层在1 mol/L NaOH溶液中表现出良好的电催化析氢活性,过程受Volmer-Heyrovsky路径控制。W含量约为40.1%(质量分数)的Co-W合金镀层析氢活性最强,其表观交换电流密度j0为3.17×10-5A/cm2;当电位负于-1.464 V(相对于饱和甘汞电极电位)后该Co-W合金镀层的阴极电流密度超越了商用Pt片。结合电化学阻抗分析获知,由于镀层本征催化活性和比表面积(或电化学活性面 积)均得到提升,使得非晶态Co-W合金镀层析氢活性获得提高。

关键词 金属材料 电沉积Co-W合金镀层非晶态合金电催化析氢反应    
Abstract

Co-W alloy coatings were prepared on Cu substrates by galvanostatic electrodeposition, which are amorphous if the concentration of WO42- ≥0.075 mol/L. Electrochemical analysis showed that the amorphous Co-W alloy coatings exhibited excellent electrocatalytic activity for hydrogen evolution reaction (HER) in 1 mol/L NaOH solution. The HER occurs though a Volmer-Heyrovsky reaction pathway. The S-4 coating (W content is 40.1 mass%) showed the best HER activity and its apparent exchange current density jo equals 3.17×10-5 A/cm2. Moreover, the cathode current density of the S-4 coating exceeds that of commercial Pt when the applied potential is more negative than -1.464Vvs.SCE. In addition, EIS results suggested that the high HER activity of the amorphous Co-W alloy coatings was mainly attributed to both of the high intrinsic catalytic activity and the large specific surface area (electrochemical active area).

Key wordsmetallic materials    electrodeposition    Co-W alloy coatings    amorphous alloy    electrocatalysis    hydrogen evolution reaction
收稿日期: 2016-12-29     
ZTFLH:  TG146  
基金资助:国家自然科学基金(51204115)和江苏省自然科学基金(BK20141193, BK20151221)
作者简介:

作者简介 王 玉,男,1988年生,硕士生

图1  WO42-浓度对Co-W合金镀层中W含量的影响
图2  Co-W合金镀层的XRD衍射图谱
图3  Co-W合金镀层的SEM照片
图4  Co-W合金镀层和Pt片在1 mol/L NaOH溶液中的(a)LSV曲线和(b) Tafel曲线
Sample Tafel slope/mVdec-1 j0/Acm-2
Pt 32.4 4.21×10-5
S-1 102.5 3.89×10-6
S-2 97.2 5.36×10-6
S-3 86.5 5.68×10-6
S-4 83.3 3.17×10-5
S-5 81.7 1.42×10-5
表1  试样的Tafel斜率和表观交换电流密度
图5  (a) Co-W合金镀层及(b) Pt片在1 mol/L NaOH溶液中0.18 V过电位下的EIS曲线 (符号为测量值,实线为拟合值),插图为等效电路模型
Sample Rs/Ωcm2 Ydl-1cm-2sf f Rct/Ωcm2 L/H RL/Ωcm2 Cdl/Fcm-2
Pt 2.53 2.487×10-5 0.9253 16.88 - - 2.58×10-5
S-1 2.85 9.49×10-4 0.8953 68.47 148.01 410.82 1.66×10-4
S-2 2.52 3.563×10-3 0.8261 61.47 124.24 329.23 2.17×10-4
S-3 2.85 4.76×10-3 0.7936 55.17 85.72 163.91 2.21×10-4
S-4 2.64 7.96×10-3 0.7865 35.68 21.37 78.61 4.81×10-4
S-5 2.51 7.29×10-3 0.7924 42.48 34.71 89.82 4.59×10-4
表2  等效电路参数
Samples Rf/Ωcm2 j0/Rf (Acm-2)
Pt 1.29 3.25×10-5
S-1 8.3 4.69×10-7
S-2 10.9 4.94×10-7
S-3 11.1 5.14×10-7
S-4 24.1 1.32×10-6
S-5 23.0 6.19×10-7
表3  表面粗糙因子和本征电催化活性
图6  (a)S-4试样在1 mol/L NaOH溶液中不同过电位下的EIS曲线(符号为测量值;实线为拟合值);(b) lgRct-1 与过电位关系
Overpotential/V Rs/Ωcm2 Ydl -1cm-2sf f Rct/Ωcm2 L/H RL/Ωcm2
0.16 2.74 8.02×10-3 0.8063 70.95 77.18 154.36
0.18 2.64 7.96×10-3 0.7865 35.68 21.37 78.61
0.2 2.65 7.78×10-3 0.7913 22.72 12.46 54.38
0.22 2.68 7.83×10-3 0.7762 14.33 3.12 25.71
表4  等效电路参数
图7  (a)S-4试样在1 mol/L NaOH溶液中不同温度下的Tafel曲线;(b)S-4试样的Arrhenius关系曲线
图8  (a)S-4试样在1 mol/L NaOH溶液中循环500次前后的LSV曲线;(b)S-4试样在1 mol/L NaOH溶液中0.3 V过电位下的j-t曲线
[1] Benjamin Rausch, Mark D Symes, Greig Chisholm, et al.Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting[J]. Science, 2014, 345(6202): 1326
[2] Du J J, Li N, Xu J X, et al.The progress of research on the electrode materials for hydrogen evolution in water electrolysis[J]. Journal of Functional Materials, 2015, 46(9): 09001(杜晶晶, 李娜, 许建雄等. 电解水析氢电极材料的研究新进展[J]. 功能材料, 2015, 46(9): 09001)
[3] Lu X Y, Zhao C.Highly efficient and robust oxygen evolution catalysts achieved by anchoring nanocrystalline cobalt oxides onto mildly oxidized multiwalled carbon nanotubes[J]. J. Mater. Chem A, 2013, 1(39): 12053
[4] Jakub Staszak-Jirkovsky, Christos D Malliakas, Pietro P Lopes, et al.Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction[J]. Nat. Mater. 2016, 15(2): 197
[5] Wang L N, Li Z, Liu X, et al.Hydrogen generation from alkaline NaBH4 solution using electroless-deposited Co-W-P supported on γ-Al2O3[J]. Int. J. Hydrogen Energy, 2015, 40(25): 7965
[6] Rosalbino F, Maccio D, Saccone A, et al.Study of Co-W crystalline alloys as hydrogen electrodes in alkaline water electrolysis[J]. Int. J. Hydrogen Energy, 2014, 39(24): 12448
[7] Ding W P, Guo X F, Mo M, et al.Progress of the study on the synthesis and catalytic property of noncrystalline alloy nanotubes[J]. Chinese. J. Catal, 2010, 31(8): 887(丁维平, 郭学锋, 莫敏等. 非晶态合金纳米管的制备及其催化性能研究进展[J]. 催化学报, 2010, 31(8): 887)
[8] Li X, Lu F, Chen C, et al.Properties, Formation mechanism and application of amorphous alloys[J]. Nonferrous Met. Mat. Eng, 2016, 37(5): 233(李翔, 吕方, 陈晨等. 非晶合金的性能、形成机理及应用[J]. 有色金属材料与工程, 2016, 37(5): 233)
[9] Rajak Syeda, Ghosha S K, Sastryb P U, et al.Electrodeposition of thick metallic amorphous molybdenum coating from aqueous electrolyte[J]. Surf. Coat. Technol., 2015, 261: 15
[10] Ghaferi Z, Raeissi K, Golozar M A, et al.Characterization of nanocrystalline Co-W coatings on Cu substrate, electrodeposited from a citrate-ammonia bath[J]. Surf. Coat. Technol., 2011, 206: 497
[11] Weston D P, Harris S J, Shipway P H, et al.Establishing relationships between bath chemistry, electrodeposition and microstructure of Co-W alloy coatings produced from a gluconate bath[J]. Electrochim. Acta, 2010, 55(20): 5695
[12] Mrinalini Mulukutla, Vamsi Karthik Kommineni, Sandip P Harimkar.Pulsed electrodeposition of Co-W amorphous and crystalline coatings[J]. Appl. Surf. Sci., 2012, 258(7): 2886
[13] Liu Y W, Hua X M, Xiao C, et al.Heterogeneous spin states in ultrathin nanosheets induce subtle lattice distortion to trigger efficient hydrogen evolution[J]. J. Am. Chem. Soc, 2016, 138: 5090
[14] Samuel Cruz-Manzo, Rui Chen, Paul Greenwood.An impedance model for analysis of EIS of polymer electrolyte fuel cells under hydrogen peroxide formation in the cathode[J]. J. Electroanal. Chem., 2015,745: 28
[15] Jovi? B M, Jovi? V D, La?njevac U ?, et al.Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solution[J]. J. Electroanal. Chem., 2016, 766: 85
[16] Herraiz-Cardona I, González-Buch C, Valero-Vidal C, et al.Co-modification of Ni-based type Raney electrodeposits for hydro gen evolution reaction in alkaline media[J]. J. Power Sources, 2013, 240: 704
[17] Duan Q H, Wang S L, Wang L P.Electro-deposition of the porous composite Ni-P/LaNi5electrode and its electro-catalytic performance toward hydrogen evolution reaction[J]. Acta Phys-Chim. Sin., 2013, 29(1): 124(段钱花, 王森林, 王丽品. 电沉积多孔复合Ni-P/LaNi5电极及其析氢电催化性能[J]. 物理化学学报, 2013, 29(1): 124)
[18] Zhu L L, Lin H P, Li Y Y, et al.A rhodium/silicon co-electrocatalyst design concept to surpass platinum hydrogen evolution activity at high overpotentials[J]. Nat. Commun., 2016, 7: 12272
[19] Zhu L L, Cai Q, Liao F, et al.Ru-modified silicon nanowires as electrocatalysts for hydrogen evolution reaction[J]. Electrochem. Commun., 2015, 52: 32
[1] 李海龙, 牟娟, 王媛媛, 葛绍璠, 刘春明, 张海峰, 朱正旺. MnNiCoCrFe多孔高熵合金的电催化析氧性能[J]. 材料研究学报, 2023, 37(5): 332-340.
[2] 姜海超, 安昊东, 杨静, 苏玉金, 李泽, 张滨. 原位生长在聚喹唑啉基共轭微孔聚合物表面的MoS2 及其析氢性能[J]. 材料研究学报, 2022, 36(12): 900-906.
[3] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[4] 施嘉伦, 盛敏奇, 吴琼, 吕凡. 非晶Co-W-B/碳布复合电极材料的制备及其电解水催化性能[J]. 材料研究学报, 2020, 34(4): 263-271.
[5] 谭德新,胡伟,陈素娴,简杰婷,周丽珊,王艳丽. Pd/PANI纳米纤维的液相合成及其对乙醇的电化学行为[J]. 材料研究学报, 2019, 33(2): 81-86.
[6] 敖克龙, 李大伟, 姚壹鑫, 吕鹏飞, 魏取福. 载钯细菌纤维素纳米纤维复合膜用于乙醇的电催化氧化[J]. 材料研究学报, 2018, 32(2): 155-160.
[7] 王艳丽,谭德新,陈森,卞玲. 纳米Pd的六角相液晶模板合成及对乙醇的电催化氧化*[J]. 材料研究学报, 2014, 28(6): 413-419.
[8] 林小燕 杨卫华 杨武涛 王美清. 稀土铒改性钛基PbO2电极的制备和性能[J]. 材料研究学报, 2012, 26(4): 367-371.
[9] 杨武涛 杨卫华 付芳. PEG/CPB复配改性二氧化铅电极的制备和性能[J]. 材料研究学报, 2012, 26(1): 8-12.
[10] 董红周 董立峰. 单壁碳纳米管负载Pt基二元金属催化剂对甲醇和乙醇氧化的电催化性能研究[J]. 材料研究学报, 2011, 25(6): 579-584.
[11] 刘峻峰 冯玉杰 吕江维 丁海洋. 含Mn中间层提高钛基SnO2电催化电极的稳定性[J]. 材料研究学报, 2008, 22(6): 593-598.
[12] 门华; 杨明川; 徐坚 . Co对Mg65Cu25-xCoxY10合金玻璃形成能力的影响[J]. 材料研究学报, 2002, 16(4): 380-384.
[13] 周畅然; 徐坚 . 添加AlN对机械合金化Zr65Al7.5Cu17.5Ni10非晶态合金热稳定性的影响[J]. 材料研究学报, 2001, 15(3): 279-286.
[14] 柳百新;陈益钢;金瓯. 多层膜离子束混合研究亚稳合金形成和理论模型的进展(英文)[J]. 材料研究学报, 1997, 11(6): 561-575.
[15] 周飞;卢柯. 非晶态合金条带高压复合法制备大块非晶态合金[J]. 材料研究学报, 1997, 11(2): 127-130.