Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (3): 168-176    DOI: 10.11901/1005.3093.2017.152
ARTICLES Current Issue | Archive | Adv Search |
Effect of Section Size and Solution Treatment on Micropore of a Third-Generation Single Crystal Superalloy DD33
Dongyu HAN1,2, Weiguo JIANG1(), Jiuhan XIAO1, Xiangwei LI1,2, Langhong LOU1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China;
Cite this article: 

Dongyu HAN, Weiguo JIANG, Jiuhan XIAO, Xiangwei LI, Langhong LOU. Effect of Section Size and Solution Treatment on Micropore of a Third-Generation Single Crystal Superalloy DD33. Chinese Journal of Materials Research, 2018, 32(3): 168-176.

Download:  HTML  PDF(7089KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of section size and solution treatment process on micropore of a nickel-based single crystal superalloy DD33 was investigated by optical microscope (OM) and scanning electron microscope (SEM). The results show that the primary dendrite arm spacing and the volume fraction of eutectics increase with the increasing of section size in the as-cast alloys. Solidification micropores occur at locations near the eutectic. The volume fraction of solidification micropores increases slightly with the increasing of section size. After the same solution treatment for alloys, the volume fractions of residual eutectics and micropores increase with the increasing of section size. Under the condition of the same section size, the volume fraction of micropores increases with the increasing of solution temperature. The formation of internal micropores is due to the Kirkendall effect induced by imbalanced diffusion of the elements during solution treatment. The different section sizes of castings lead to the different segregation degrees, which results in the different volume fractions of the homogenization micropores. According to the evolution of microstructure of the blade, the appropriate solution treatment process was designed and then verified experimentally.

Key words:  metallic materials      single crystal superalloy      section size      solution treatment      micropore     
Received:  24 February 2017     
ZTFLH:  TG146  
Fund: Supported by National Natural Science Foundation of China (Nos. 51674235, 51671196, 51401216 & 51701220)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.152     OR     https://www.cjmr.org/EN/Y2018/V32/I3/168

Fig.1  Microstructures of specimens with different section sizes and solution treatment processes:
(a) 0.5 mm/as-cast, (b) 0.5 mm/1300℃, (c) 0.5 mm/1320℃, (d) 0.5 mm/1330℃, (e) 2.5 mm/as-cast, (f) 2.5 mm/1300℃, (g) 2.5 mm/1320℃, (h) 2.5 mm/1330℃, (i) 5 mm/as-cast, (j) 5 mm/1300℃, (k) 5 mm/1320℃, (l) 5 mm/1330℃
Fig.2  Volume fraction of eutectics of specimens with different section sizes and solution treatment processes
Fig.3  Micropores of specimens with different section sizes and solution treatment processes:
(a) 0.5 mm/as-cast, (b) 0.5 mm/1300℃, (c) 0.5 mm/1320℃, (d) 0.5 mm/1330℃, (e) 2.5 mm/as-cast, (f) 2.5 mm/1300℃, (g) 2.5 mm/1320℃, (h) 2.5 mm/1330℃, (i) 5 mm/as-cast, (j) 5 mm/1300℃, (k) 5 mm/1320℃, (l) 5 mm/1330℃
Fig.4  Volume fraction of micropores of specimens with different section sizes and solution treatment processes
Fig.5  Micropore of as-cast alloy with the section size of 5 mm
(a) irregular solidification micropore near the eutectic, (b) irregular solidification micropore morphology, (c) subcircular solidification micropore near the eutectic, (d) subcircular solidification micropore morphology
Fig.6  Homogenization micropores of alloy with the section size of 2.5 mm and solution treatment at 1320℃
(a) homogenization micropore position, (b) homogenization micropore morphology
Fig.7  Morphologies of micropore near the eutectic of alloy with the section size of 2.5 mm and solution treatment at 1320℃ (a) solidification micropore, (b) homogenization micropore
Fig.8  Relationship between the volume fraction of eutectics and solution treatment temperatures
Fig.9  Relationship between the volume fraction of micropores and solution treatment temperatures
Fig.10  Microstructures and micropores of specimens with different section sizes and the solution treatment at 1335℃:
(a) and (d) 0.5 mm, (b) and (e) 2.5 mm, (c) and (f) 5 mm
Fig.11  Volume fraction of micropores of specimens with different section sizes and the solution treatment at 1335℃
[1] P. Caron, T. Khan.Evolution of Ni-based superalloys for single crystal gas turbine blade applications[J]. Aerospace Science and Technology, 1999, 3(8): 513
[2] A. F. Giamei, D. L. Anton.Rhenium additions to a Ni-base superalloy: effects on microstructure[J]. Metallurgical Transactions A, 1985, 16(11): 1997
[3] S. Wollmer, T. Mack, U. Glatzel.Influence of tungsten and rhenium concentration on creep properties of a second generation superalloy[J]. Materials Science and Engineering A, 2001, 319: 792
[4] T. M. Pollock, S. Tin.Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure and properties[J]. Journal of Propulsion and Power, 2006, 22(2): 361
[5] H. T. Pang, H. B. Dong, R. Beanland, et al.Microstructure and solidification sequence of the interdendritic region in a third generation single-crystal nickel-base superalloy[J]. Metallurgical and Materials Transactions A, 2009, 40(7): 1660
[6] A. I. Epishin, I. L. Svetlov, N. V. Petrushin, et al. Segregation in single-crystal nickel-base superalloys[J]. Defect and Diffusion Forum, 2011, 309-310: 121
[7] E. C. Caldwell, F. J. Fela, G. E. Fuchs.The segregation of elements in high-refractory-content single-crystal nickel-based superalloys[J]. Journal of Metals, 2004, 56(9): 44
[8] B. C. Wilson, J. A. Hickman, G. E. Fuchs.The effect of solution heat treatment on a single-crystal Ni-based superalloy[J]. Journal of Metals, 2003, 55(3): 35
[9] S. R. Hegde, R. M. Kearsey, J. C. Beddoes.Designing homogenization-solution heat treatments for single crystal superalloys[J]. Materials Science and Engineering A, 2010, 527(21-22): 5528
[10] G. E. Fuchs.Solution heat treatment response of a third generation single crystal Ni-base superalloy[J]. Materials Science and Engineering A, 2001, 300(1-2): 52
[11] G. L. Erickson.A new, 3rd-generation, single-crystal, casting superalloy[J]. Journal of Metals, 1995, 47(4): 36
[12] Liu X G, Lei Q, Wang L, et al.Microstructural evolution of a third-generation single crystal superalloy DD33 during solution treatment[J]. Chinese Journal of Materials Research, 2014, 28(6): 407(刘心刚, 雷强, 王莉等. 第三代单晶高温合金DD33固溶处理中组织的演变[J]. 材料研究学报, 2014, 28(6): 407)
[13] B. S. Bokstein, A. I. Epishin, T. Link, et al.Model for the porosity growth in single-crystal nickel-base superalloys during homogenization[J]. Scripta Materialia, 2007, 57(9): 801
[14] Shi Q Y, Li X H, Zheng Y R, et al.Formation of solidification and homogenisation micropores in two single crystal superalloys produced by HRS and LMC processes[J]. Acta Metallurgica Sinica, 2012, 48(10): 1237(石倩颖, 李相辉, 郑运荣等. HRS和LMC工艺制备的两种镍基单晶高温合金铸态及固溶微孔的形成[J]. 金属学报, 2012, 48(10): 1237)
[15] Li X W, Wang L, Liu X G, et al.Microporosity reduction by liquid cooling process of a single crystal nickel based superalloy[J]. Chinese Journal of Materials Research, 2014, 28(9): 656(李相伟, 王莉, 刘心刚等. HRS和LMC工艺对第三代镍基单晶高温合金DD33中显微孔洞的影响[J]. 材料研究学报, 2014, 28(9): 656)
[16] J. Lecomte-Beckers.Relation between chemistry, solidification behaviour, microstructure and microporosity in nickel- base superalloys[A]. Superalloys 1988[C]. Warrendale, 1988
[17] D. L. Anton, A. F. Giamei.Porosity distribution and growth during homogenization in single-crystals of a nickel-base superalloy[J]. Materials Science and Engineering, 1985, 76(1-2): 173
[18] A. Baldan.On the thin-section size dependent creep strength of a single crystal nickel-base superalloy[J]. Journal of Materials Science, 1995, 30(24): 6288
[19] B. Cassenti, A. Staroselsky.The effect of thickness on the creep response of thin-wall single crystal components[J]. Materials Science and Engineering A, 2009, 508(1-2): 183
[20] Yang L, Li J R.Effect of section size on the microstructure of thin-walled specimen of DD6 single crystal superalloy[J]. Rare Metal Materials and Engineering, 2015, 44(6): 1363
[21] Shi Z X, Han M, Liu S Z, et al.Effect of sample size on microstructures of a single crystal superalloy[J]. Journal of Iron and Steel Research, 2012, 24(4): 28(史振学, 韩梅, 刘世忠等. 试样尺寸对一种单晶高温合金组织的影响[J]. 钢铁研究学报, 2012, 24(4): 28)
[22] Li J F, Zhou T T, Yan P, et al.Effects of section sizes on microstructure of a nickel-base single crystal superalloy[J]. Journal of Materials Engineering, 2009, (6): 20(李剑锋, 周铁涛, 燕平等. 一种镍基单晶高温合金凝固组织的截面尺寸效应[J]. 材料工程, 2009, (6): 20)
[23] Du W, Wei P Y, Li J G, et al.Microstructure and microsegregation of Ni-base single crystal superalloy solidified at medium cooling rate[J]. Acta Metallurgica Sinica, 1998, 34(4): 356(杜炜, 魏朋义, 李建国等. 中速生长条件下单晶高温合金组织及偏析研究[J]. 金属学报, 1998, 34(4): 356)
[24] M. Lamm, R. F. Singer.The effect of casting conditions on the high-cycle fatigue properties of the single-crystal nickel-base superalloy PWA 1483[J]. Metallurgical and Materials Transactions A, 2007, 38(6): 1177
[25] Wang F, Ma D X, Mao Y R et al. Influence of the size effect on the microstructures of the DWDS- and Bridgman-Solidified single-crystal CMSX-4 superalloy[J]. Metallurgical and Materials Transactions B, 2015, 47(1): 76
[26] A. Epishin, T. Link, I. L. Svetlov, et al.Mechanism of porosity growth during homogenisation in single crystal nickel-based superalloys[J]. International Journa of Materials Research, 2013, 104(8): 776
[27] M. S. A.Karunaratne, D. C. Cox, P. Carter, et al. Modelling of the microsegregation in CMSX-4 superalloy and its homogenisation during heat treatment[A]. Superalloys 2000[C]. Warrendale, 2000
[28] S. R. Hegde, R. M. Kearsey, J. Beddoes.Design of solutionizing heat treatments for an experimental single crystal superalloy[A]. Superalloys 2008[C]. Warrendale, 2008
[29] K. Matuszewski, H. Matysiak, J. Jaroszewicz, et al.Influence of Bridgman process conditions on microstructure and porosity of single crystal Ni-base superalloy CMSX-4[J]. International Journal of Cast Metals Research, 2014, 27(6): 329
[30] W. S. Walston, I. M. Bernstein, A. W. Thompson.The role of the γ/γ' eutectic and porosity on the tensile behavior of a single-crystal nickel-base superalloy[J]. Metallurgical Transactions A,1991, 22(6): 1443
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!