Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (12): 939-946    DOI: 10.11901/1005.3093.2016.742
Current Issue | Archive | Adv Search |
Crack Propagation of Weld Joint for Steel 316LN by Impact Loading
Keshun DAI, Li ZHU, Han WANG, Wenkai XIAO()
School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
Cite this article: 

Keshun DAI, Li ZHU, Han WANG, Wenkai XIAO. Crack Propagation of Weld Joint for Steel 316LN by Impact Loading. Chinese Journal of Materials Research, 2017, 31(12): 939-946.

Download:  HTML  PDF(8011KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The fracture behavior of weld join of steel 316LN by impact test was investigated in terms of macro and micro perspectives, while a numerical model based on cohesive finite element method (CFEM) was presented to describe the effect of microstructure on the fracture behavior of the weld joint of steel 316LN. Based on microstructure images acquired from the experiments, three types of typical microstructure such as equiaxial-, columnar- and dendritic sub-grains were numerically modeled. The crack propagation paths in the three types of microstructure were simulated, and which then were compared with the experimental results. It follows that the observed fracture behavior can be interpreted quite well by the prediction of the simulation.

Key words:  metallic materials      crack propagation      cohesive finite element method      sub-grains     
Received:  20 December 2016     
ZTFLH:  TG115.6  

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.742     OR     https://www.cjmr.org/EN/Y2017/V31/I12/939

Fig.1  Cast microstructures of 316LN weldment (a) and microstructure of equiaxial sub-grains in region I (b), columnar sub-grains in region II (c), and dendritic sub-grains in region III (d)
Fig.2  Charpy V impact test model
Fig.3  Bilinear cohesive law
Fig.4  Sub-grain model of equiaxed sub-grain model (a), columnar sub-grain model (b) and dendritic sub-grain model (c)
Fig.5  Nanoidentation load-depth curves
σ0
/106 Pa
α
/106 Pa
β ε˙0 n Density, ρ
/kgm-3
E
/109 Pa
ν Tm
/106 Pa
Wc
/10-6 m
GF
/103 Jm-2
Sub-grain zone 325 1854 0.01262 0.1 0.42 7900 173.3 0.28 1480 10 14.8
Sub-grainboundary 455 2120 0.01262 0.1 0.35 7900 206.8 0.28 1800 6 10.8
Table 1  Mechanical property parameters of weldment
Fig.6  Actual extension path of crack in equiaxial-(a), columnar-(c) and dendritic sub-grains (e); simulative extension path of crack in equiaxial-(b), columnar-(d) and dendritic sub-grains (f)
Fig.7  Microvoids nucleation occurred (a), coalesced (b) and extended (c) in simulated columnar sub-grains, (d) microvoids nucleation occurred and coalesced in real columnar sub-gains
Fig.8  SEM images of impact fracture in columnar (a) and equiaxial (b) sub-grains area
[1] Xu X P, Needleman A.Numerical simulations of fast crack growth in brittle solids[J]. J. Mech. Phys. Solids, 1994, 42: 1397
[2] Haselbach P U, Bitsche R D, Branner K.The effect of delaminations on local buckling in wind turbine blades[J]. Renew. Energ., 2016, 85: 295
[3] Zhou W, Liu R, Wang Y R, et al.Acoustic emission monitoring and finite element analysis for torsion failure of Metal/FRP cylinder-shell adhesive joints[J]. J. Adhes. Sci. Technol., 2015, 29: 2433
[4] Zhang Y, Mabrouki T, Nelias D, et al.Cutting simulation capabilities based on crystal plasticity theory and discrete cohesive elements[J]. J. Mater. Process. Technol., 2012, 212: 936
[5] Arora H, Tarleton E, Li-Mayer J, et al.Modelling the damage and deformation process in a plastic bonded explosive microstructure under tension using the finite element method[J]. Comput. Mater. Sci., 2015, 110: 91
[6] Nafar Dastgerdi J, Anbarlooie B, Marzban S, et al.Mechanical and real microstructure behavior analysis of particulate-reinforced nanocomposite considering debonding damage based on cohesive finite element method[J]. Comp. Struct., 2015, 122: 518
[7] Yang L, Wu Z J, Gao D Y, et al.Microscopic damage mechanisms of fibre reinforced composite laminates subjected to low velocity impact[J]. Comput. Mater. Sci., 2016, 111: 148
[8] Hashemi R, Spring D W, Paulino G H.On small deformation interfacial debonding in composite materials: Containing multi-coated particles[J]. J. Comp. Mater., 2015, 49: 3439
[9] Espinosa H D, Zavattieri P D.A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part II: Numerical examples[J]. Mech. Mater., 2003, 35: 365
[10] Espinosa H D, Zavattieri P D.A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part I: Theory and numerical implementation[J]. Mech. Mater., 2003, 35: 333
[11] Li Y, Zhou M.Prediction of fracturess toughness of ceramic composites as function of microstructure: II. Analytical model[J]. J. Mech. Phys. Solids, 2013, 61: 489
[12] Li Y, Zhou M.Prediction of fracture toughness of ceramic composites as function of microstructure: I. Numerical simulations[J]. J. Mech. Phys. Solids, 2013, 61: 472
[13] Zhai J, Tomar V, Zhou M.Micromechanical simulation of dynamic fracture using the cohesive finite element method[J]. J. Eng. Mater. Technol., 2004, 126: 179
[14] Hütter G, Zybell L, Kuna M.Micromechanical modeling of crack propagation in nodular cast iron with competing ductile and cleavage failure[J]. Eng. Fract. Mech., 2015, 147: 388
[15] Barrera O, Tarleton E, Cocks A C F. A micromechanical image-based model for the featureless zone of a Fe-Ni dissimilar weld[J]. Philosoph. Mag., 2014, 94: 1361
[16] Hosseini-Toudeshky H, Anbarlooie B, Kadkhodapour J.Micromechanics stress-strain behavior prediction of dual phase steel considering plasticity and grain boundaries debonding[J]. Mater. Des., 2015, 68: 167
[17] Matsuno T, Teodosiu C, Maeda D, et al.Mesoscale simulation of the early evolution of ductile fracture in dual-phase steels[J]. Int. J. Plasticity, 2015, 74: 17
[18] Saeidi K, Gao X, Zhong Y, et al.Hardened austenite steel with columnar sub-grain structure formed by laser melting[J]. Mater. Sci. Eng., 2015, 625A: 221
[19] Khan A S, Huang S J.Continuum Theory of Plasticity[M]. New York: John Wiley & Sons, Inc.
[20] Gupta A K, Anirudh V K, Singh S K.Constitutive models to predict flow stress in Austenitic Stainless Steel 316 at elevated temperatures[J]. Mater. Des., 2013, 43: 410
[21] Ardakani S H, Afshar A, Mohammadi S.Numerical study of thermo-mechanical coupling effects on crack tip fields of mixed-mode fracture in pseudoelastic shape memory alloys[J]. Int. J. Solids Struct., 2016, 81:160
[22] Yuan H, Li X.Effects of the cohesive law on ductile crack propagation simulation by using cohesive zone models[J]. Eng. Fract. Mech., 2014, 126: 1
[23] Guo E Y, Wang M Y, Jing T, et al.Temperature-dependent mechanical properties of an austenitic-ferritic stainless steel studied by in situ tensile loading in a scanning electron microscope (SEM)[J]. Mater. Sci. Eng., 2013, 580A: 159
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!