Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (12): 918-924    DOI: 10.11901/1005.3093.2016.771
Current Issue | Archive | Adv Search |
Effect of Alumina-sol Modified Expandable Graphite on Flame Retardation of Semi-rigid Polyurethane Form
Ying GU2, Lizhu LIU1,2(), Xiaorui ZHANG1,2, Ling WENG1,2
1 College of Material Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China
2 Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China
Cite this article: 

Ying GU, Lizhu LIU, Xiaorui ZHANG, Ling WENG. Effect of Alumina-sol Modified Expandable Graphite on Flame Retardation of Semi-rigid Polyurethane Form. Chinese Journal of Materials Research, 2017, 31(12): 918-924.

Download:  HTML  PDF(2714KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Expandable graphite (EG) was modified by using alumina-sol (Al-sol), then the semi-rigid polyurethane foam (SRPUF), EG doped SRPUF and Al-sol modified EG doped SRPUF were prepared respectively by one step method. The prepared Al-sol modified EG was characterized by means of Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscope (TEM). The tensile property and flame retardance of the prepared foams were examined with tensile testing machine and oxygen index tester respectively. The results show that the surface of EG was coated with the Al-sol after modification; For the same doping amount of 12% (mass fraction), the mechanical property of the SRPUF doped with Al-sol modified EG was better than that with the plain EG; Among others, the flame retardance of the SRPUF doped with Al-sol modified EG is the best with limiting oxygen index of 27.6% and horizontal burning level of grade HF-1. The SRPUFs before and after burnt were examined by means of XRD, SEM and TEM, it follows that the enhancement of flame resistance of the SRPUF doped with Al-sol modified EG may be ascribed to the following facts, i.e. the release of crystal water, crystal-phase transformation and the release of non-flammable gas of the Al-sol on the top surface of EG, besides, the Al-sol can also play important role as binding agent for fixing the worms-like graphite.

Key words:  composites      Al-sol      EG      polyurethane foam      flame retardance      limiting oxygen index     
Received:  04 January 2017     
ZTFLH:  TQ323  
Fund: Supported by National Basic Research Program of China (No. 2012CB723308)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.771     OR     https://www.cjmr.org/EN/Y2017/V31/I12/918

Fig.1  Progress of modification of EG
Fig.2  TEM images of alumina sol modified EG (a) unmodified EG, (b) modified EG
Fig.3  FT-IR spectra of Al-sol, unmodified EG and modified EG
Additive amount of EG/ % Limit oxygen index of /% Tensile strength /kPa
0 14.7 239.4
8 21.8 220.1
10 22.4 173.5
12 23.9 113.4
14 24.3 87.2
Table 1  Effect of EG loading on LOI and tensile strength
Fig.4  Tensile strength of three kinds of SPRUF
Fig.5  LOI of three kinds of SPRUF
No. 1 2 3 4 5
Automatic quench time/s 0.7 1.1 0.8 1.5 1.5
Droppings none none none none none
Table 2  Horizontal burning test results of SRPUF with modified EG
Fig.6  XRD spectra of Al-sol
Fig.7  SEM photoes of the morphology of carbon layer after combustion of three kinds of SRPUF (a) pure SRPUF; (b) unmodified EG/SPRUF; (c) modified EG/SPRUF
Fig.8  TEM images of EG carbon and the lamellar substance of foam substrate surface after modified EG/SRPUF burned (a) EG without Al2O3 attached; (b) EG with Al2O3 attached; (c) lamellar substance; (d) diffraction pattern of lamellar substance
[1] Liu Y J.Polyurethane Resin and Its Application [M]. Beijing: Chemical Industry Press, 2012: 100(刘益军. 聚氨酯树脂及其应用 [M]. 北京: 化学工业出版社, 2012: 100)
[2] Xu P L, Zhang S Q.Handbook of Polyurethane Materials [M]. Beijing: Chemical Industry Press, 2002: 268(徐培林, 张淑琴. 聚氨酯材料手册 [M]. 北京: 化学工业出版社, 2002: 268)
[3] He J M.Novel Polymer Foaming Material and Technology [M]. Beijing: Chemical Industry Press, 2008: 10(何继敏. 新型聚合物发泡材料及技术 [M]. 北京: 化学工业出版社, 2008: 10)
[4] Mi J, Xie S M, Du J X, et al.Flame retardancy and physical properties of rigid polyurethane foam containing phosphorus flame retardants[J]. Polym. Mater. Sci. Eng., 2013, 29(10): 64(糜婧, 谢松明, 杜建新等. 含磷阻燃剂对硬质聚氨酯泡沫塑料阻燃性能和力学性能的影响[J]. 高分子材料科学与工程, 2013, 29(10): 64)
[5] Hong X D, Dai W J.Study on properties of rigid polyurethane foams plastics with phosphorus-containing flame retardants[J]. Eng. Plastics Appl., 2013, 41(8): 95(洪晓东, 代文娟. 含磷阻燃剂阻燃硬质聚氨酯泡沫塑料的性能研究 [J]. 工程塑料应用, 2013, 41(8): 95)
[6] Liu D F, Lin X S.Research progress of plastics flame-retarded by expandable graphite[J]. Plastics Sci. Technol., 2010, 38(7): 99(刘定福, 林晓珊. 可膨胀石墨阻燃塑料研究进展[J]. 塑料科技, 2010, 38(7): 99)
[7] Modesti M, Lorenzetti A, Simioni F, et al.Expandable graphite as an intumescent flame retardant in polyisocyanurate-polyurethane foams[J]. Polym. Degrad. Stab., 2002, 77: 195
[8] Dong J L, Cao H B, Zhang Y.Preparation of flame-retardant of water blown polyurethane foams filled with expandable graphite[J]. Polym. Mater. Sci. Eng., 2009, 25(6): 128(董金路, 曹宏斌, 张懿. 可膨胀石墨阻燃水发泡聚氨酯泡沫塑料的制备[J]. 高分子材料科学与工程, 2009, 25(6): 128)
[9] Kou B, Tan L H, Hang Z S.Progress in research on synergic fire retarding of expandable graphite[J]. Mater. Rev., 2010, 24(9): 84(寇波, 谈玲华, 杭祖圣. 可膨胀石墨协同阻燃的研究进展[J]. 材料导报, 2010, 24(9): 84)
[10] Liu F P, Zhu W M.Fire retardant intumescent coating for lignocellulosic materials [P]. US, 5968669, 1999
[11] Zhan G, Chen Q Q, Shi Y, et al.Manufacture and stability test of alumina sol[J]. J. Wuhan Inst. Technol., 2012, 34(9): 39(詹刚, 陈巧巧, 石月等. 铝溶胶的制备及稳定性 [J]. 武汉工程大学学报, 2012, 34(9): 39)
[12] Yin J J, Li M, Li Y B, et al.Preparation of alumina sol with high solid content[J]. Contemporary Chemical Industry, 2014, 43: 1988(尹建军, 黎敏, 李玉波等. 高固含量铝溶胶的制备[J]. 当代化工, 2014, 43: 1988)
[13] Dressler M, Nofz M, Pauli J, et al.Influence of polyvinylpyrrolidone (PVP) on alumina sols prepared by a modified yoldas procedure[J]. J. Sol-Gel Sci. Technol., 2008, 47: 260
[14] Jia Y L.Preparation, properties and structure of alumina sol [D]. Wuhan: Wuhan University of Technology, 2012(贾宇龙. 铝溶胶的制备及结构性能 [D]. 武汉: 武汉理工大学, 2012)
[15] Song X J.Influence of accelerators addition on workability and mechanical strength of colloidal alumina bonded corundum-based castables [D]. Zhengzhou: Zhengzhou University, 2014(宋秀娟. 促凝剂对铝溶胶结合刚玉质浇注料工作性能和强度的影响 [D]. 郑州: 郑州大学, 2014)
[16] Zhao H Z, Xu B, He Z Y.Preparation and characterization of structure and property of AlOOH sol[J]. J. Wuhan Univ. Sci. Technol., 2010, 33: 264(赵惠中, 徐兵, 贺中央. AlOOH溶胶的制备及其结构与性能表征[J]. 武汉科技大学学报, 2010, 33: 264)
[17] Mukhopadhyay S, Mahapatra S, Mukherjee P, et al.Effect of alumina sol in no-cement refractory castables[J]. Trans. Indian Ceramic Soc., 2001, 60: 63
[18] Wang L Z.Studies on flame horizontal model and stochastic model in the building [D]. Chongqing: Chongqing University, 2006(王利珍. 可燃物水平火焰蔓延模型和随机模型的研究 [D]. 重庆: 重庆大学, 2006)
[19] Li B, Shao L L.Appraisal of alumina and aluminium hydroxide by XRD[J]. Inorganic Chemicals Industry, 2008, 40(2): 54(李波, 邵玲玲. 氧化铝、氢氧化铝的XRD鉴定[J]. 无机盐工业, 2008, 40(2): 54)
[20] Yang N R, Yue W H.Handbook of Inorganic Non Metallic Material [M]. Wuhan: Wuhan Industrial University Press, 2000: 6(杨南如, 岳文海. 无机非金属材料图谱手册 [M]. 武汉: 武汉工业大学出版社, 2000: 6)
[21] Bohlin P, Audy O, ?krdliková L, et al.Evaluation and guidelines for using polyurethane foam (PUF) passive air samplers in double-dome chambers to assess semi-volatile organic compounds (SVOCs) in non-industrial indoor environments[J]. Environ. Sci.: Processes Impacts, 2014, 16: 2617
[22] Li Y H.Preparation and application of micro/nanostructured alumina powder [D]. Guangzhou: South China University of Technology, 2014(李艳辉. 微纳米结构氧化铝粉体合成与应用研究 [D]. 广州: 华南理工大学, 2014)
[1] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[5] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[6] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[7] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[8] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[9] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[10] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[11] KONG Yafei, LUO Xinghong, LI Yang, LIU Shi. Effect of Gravity on Dendrite Growth and Microsegregation of Ni-based Single Crystal Superalloy[J]. 材料研究学报, 2023, 37(10): 770-780.
[12] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[13] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[14] LONG Qing, WANG Chuanyang. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents[J]. 材料研究学报, 2022, 36(11): 837-844.
[15] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
No Suggested Reading articles found!