Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (8): 583-588    DOI: 10.11901/1005.3093.2015.005
Current Issue | Archive | Adv Search |
Effect of Carbon Nanotube Content on Electromagnetic Interference Shielding Performance of Carbon Nanotube-Cellulose Composite Materials
Zhipeng PANG1,Xiaogang SUN1,2,**(),Xiaoyuan CHENG1,Xiaoyong WU1,Qi FU1
1. School of Mechantronics Engineering, Nanchang University, Nanchang, 330031, China
2. Institute of lithium Energy, Nanchang 330031, China
Cite this article: 

Zhipeng PANG,Xiaogang SUN,Xiaoyuan CHENG,Xiaoyong WU,Qi FU. Effect of Carbon Nanotube Content on Electromagnetic Interference Shielding Performance of Carbon Nanotube-Cellulose Composite Materials. Chinese Journal of Materials Research, 2015, 29(8): 583-588.

Download:  HTML  PDF(3873KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Composite sheets of carbon nanotubes-cellulose fibers were made by suction filtration method with cellulose fibers as matrix and graphitized CNTs as electroconductive agent. The products were characterized by scanning electron microscopy, shielding effectiveness, four-point probes, and while the effect of carbon nanotube content on the EMI shielding performance of the prepared composite sheets was investigated. The results show that the shape and conductivity is controllable for the composite sheets, which then exhibits good flexibility, electrical conductivity and EMI shielding effectiveness. CNTs were adsorbed on the cellulose fibers and formed a continuously interconnected conductive network. With the increasing amount of CNTs from 10% to 71%, the conductivity of the composite sheets increased from 9.92 S/m to 216.3S/m and correspondingly their EMI shielding effectiveness increased from 15dB to 45dB in the frequency range 175 MHz-1600 MHz.

Key words:  composite materials      CNTs      EMI shielding      flexible      cellulose fibers      conductive sheets     
Received:  05 January 2015     
Fund: *Supported by Jiangxi Education Bureau Program No. KJLD13006 and Program of Jiangxi Scientific and Technological Bureau Nos.2012ZBBE50012 &20142BBE50071.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.005     OR     https://www.cjmr.org/EN/Y2015/V29/I8/583

Sample Mass of cellulose fibers (g) Mass of CNTs (g) Content of CNTs
1# 1 0.11 10%
2# 1 0.25 20%
3# 1 0.5 33%
4# 1 1 50%
5# 1 1.5 60%
6# 1 2 66%
7# 1 2.5 71%
Table 1  Production programs of CNT paper
Fig.1  SEM of CNTs (a), HRTEM of CNTs before graphitization (b) and HRTEM of CNTs after graphitization (c)
Fig.2  XRD patterns of CNTs before and after graphitization
Fig.3  CNT paper under bending conditions (a) and CNT paper work as wires and light up the LED (b)
Fig.4  SEM of the section of CNTs-cellulose composite materials different magnifications: (a) 200x , (b) 2500x
Fig.5  SEM of the surface of CNT papers with different loading of CNTs (a) 10%, (b) 20%, (c) 33%, (d) 50%, (e) 60%, (f) 66%, (g) 71%
Sample Mass (g) Content of CNTs Thickness (mm) Surface resistivity (Ω/sq) Conductivity (S/m)
1# 1.11 10% 0.28 360.2 9.92
2# 1.25 20% 0.44 106.3 18.51
3# 1.5 33% 0.52 25.6 62.5
4# 2 50% 0.64 7.5 133.3
5# 2.5 60% 0.95 4.4 204.9
6# 3 66% 1.38 3.5 213.2
7# 3.5 71% 2.22 2.1 216.3
Table 2  Physical characterization of CNT paper with different loading of CNTs
Fig.6  EMI shielding effectiveness of samples with different loading of CNTs
Fig.7  Effect of CNTs content on conductivity and SE in the frequency of 1500MHz of CNT paper
1 S. Iijima,Helical microtubules of graphitic carbon, Nature, 354(6348), 56(1991)
2 R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical properties of carbon nanotubes?(Vol. 4), London: Imperial college press (1998)
3 M. R. Falvo, G. J. Clary, R. M Taylor, V. Chi, F. P. Brooks, S. Washburn,R, Superfine. Bending and buckling of carbon nanotubes under large strain, Nature, 389(6651), 582(1997)
4 T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, T. Thio,Electrical conductivity of individual carbon nanotubes, Nature, 382(6586), 54(1996)
5 Y. Saito, S. Uemura,Field emission from carbon nanotubes and its application to electron sources, Carbon, 38(2), 169(2000)
6 R. H. Baughman, C. X. Cui, A. A. Zakhidov, Z. Iqbal, J. N. Barisci, G. M. Spinks, G. G. Wallace, A. Mazzoldi, D. D. Rossi, A. G. Rinzler, O. Jascinski, S. Roth, M. Kertesz,Carbon nanotube actuators, Science, 284(5418), 1340(1999)
7 R. H. Baughman, A. A. Zakhidov, W. A.de Heer,Carbon nanotubes--the route toward applications, Science, 297(5582), 787(2002)
8 Z. K. Tang, L. Zhang, N. Wang, X. X Zhang, G. H. Wen, G. D. Li, J. N. Wang, C. T. Chan, P. Sheng,Superconductivity in 4 angstrom single-walled carbon nanotubes, Science, 292(5526), (2001)
9 Y. Huang, N. Li, Y. Ma, F. Du, F. Li, X. He, X. Lin, H. Gao, Y. Chen,The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites, Carbon, 45(8), 1614(2007)
10 P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, S. K. Dhawan,Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding, Materials Chemistry and Physics, 113(2), 919(2009)
11 C. Xiang, Y. Pan, J. Guo,Electromagnetic interference shielding effectiveness of multiwalled carbon nanotube reinforced fused silica composites, Ceramics International, 33(7), 1293(2007)
12 S. M. Yuen, C. C. Ma, M. C. Y. Chuang, K. C. Yu, S. Y. Wu, C. C. Yang, M. H. Wei,Effect of processing method on the shielding effectiveness of electromagnetic interference of MWCNT/PMMA composites, Composites Science and Technology, 68(3), 963(2008)
13 A. Gupta, V. Choudhary,Electromagnetic interference shielding behavior of poly (trimethylene terephthalate)/multi-walled carbon nanotube composites, Composites Science and Technology, 71(13), 1563(2011)
14 ZHAO Yan,DUAN Yuexin , LI Weiwei , LIANG Zhenfang, Radar absorbing property in eight millimetre wave of MWXNTs/ CF/ epoxy composites, Acta Materiae Compositae Sinica, 24(3), 23(2007)
14 (肇 研, 段跃新, 李蔚慰, 梁振方, 多壁碳纳米管复合材料在8 mm波段的吸波性能, 复合材料学报, 24(3), 23(2007))
15 R. Che, L. M. Peng, X. F. Duan, Q. Chen, X. L. Liang,Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes, Advanced Materials, 16(5), 401(2004)
16 SUN Xiaogang,Effect of carbon nanotube content on the radar absorbing properties of carbon nanotube/resin composites, New Carbon Materials, 22(4), 375(2008)
16 (孙晓刚, 碳纳米管加载量对复合材料吸波性能的影响, 新型炭材料, 22(4), 375(2008))
17 J. H. Johnston, J. Moraes, T. Borrmann,Conducting polymers on paper fibres, Synthetic metals, 153(1), 65(2005)
18 R. E .Anderson, J. Guan, M. Ricard, G. Dubey, J. Su, G. Lopinski, G. Dorris, O. Bourne, B. Simard,Multifunctional single-walled carbon nanotube-cellulose composite paper, Journal of Materials Chemistry, 20(12), 2400(2010)
19 S. H. Yoon, H. J. Jin, M. C. Kook, Y. R. Pyun,Electrically conductive bacterial cellulose by incorporation of carbon nanotubes, Biomacromolecules, 7(4), 1280(2006)
20 T. Oya, T. Ogino,Production of electrically conductive paper by adding carbon nanotubes, Carbon, 46(1), 169(2008)
21 B. Fugetsu, E. Sano, M .Sunada, Y. Sambongi, T. Shibuya, X. Wang, T. Hiraki,Electrical conductivity and electromagnetic interference shielding efficiency of carbon nanotube/cellulose composite paper, Carbon, 46(9), 12562008)
22 M. Imai, K. Akiyama, T. Tanaka, E. Sano,Highly strong and conductive carbon nanotube/cellulose composite paper, Composites Science and Technology, 70(10), 1564(2010)
23 P. Moilanen, M. Luukkainen, J. Jekkonen, V. Kangas,EMI shielding effects of carbon nanotube cellulose nanocomposite, InElectromagnetic Compatibility (EMC), 2010 IEEE International Symposium on?(pp. 198-201), IEEE(2010, July)
24 H. Dai, E. W. Wong, C. M. Lieber,Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes, Science, 272(5261), 523(1996)
25 C. C. M. Ma, Y. L. Huang, H. C. Kuan, Y. S. Chiu,Preparation and electromagnetic interference shielding characteristics of novel carbon-nanotube/siloxane/poly-(urea urethane) nanocomposites, Journal of Polymer Science Part B: Polymer Physics, 43(4), 345(2005)
26 D. D. L. Chung,Electromagnetic interference shielding effectiveness of carbon materials, Carbon, 39(2), 279(2001)
[1] ZHAO Chaofeng, ZHENG Xiaoyan, LI Kairui, JIA Shikui, ZHANG Ming, LI Yesheng, WU Ziping. Surface Metallization of Carbon Nanotube Film for Flexible Lithium-ion Batteries with High Output Current[J]. 材料研究学报, 2022, 36(5): 373-380.
[2] ZHU Shiyang, PAN Xu, ZHONG Yesheng, MA Xiaoliang, GAO Yan, SHI Liping, LI Mingwei, HE Xiaodong. Preparation and Properties of SiOC Aerogel/Flexible Ceramic Fiber Composite[J]. 材料研究学报, 2022, 36(4): 298-306.
[3] SUN Liying, QIAN Jianhua, ZHAO Yongfang. Preparation and Performance of AgNWs -TPU/PVDF Flexible Film Capacitance Sensors[J]. 材料研究学报, 2021, 35(6): 441-448.
[4] PAN Ying, ZHAO Hongting. Preparation of Halloysite Based Layer-by-Layer Coating on Flexible Polyurethane Foam and Its Performance of Flame Retardant and Smoke Suppression[J]. 材料研究学报, 2021, 35(6): 449-457.
[5] PENG Zitong, GAO Yanrong, YAO Chu, YAO Junlong, ZHU Wenwen, XU Wen, JIANG Xueliang. Preparation and Photocatalytic Activity of Fe/Yb Co-doped Titanium Dioxide Hollow Sphere[J]. 材料研究学报, 2021, 35(2): 135-142.
[6] Wenshen YANG,Lin LANG,Xiuli YIN,Chuangzhi WU. Influencing Factors on Formation of SWCNTs in the Channels of AFI Molecular Sieves by Low-temperature Hydrocracking[J]. 材料研究学报, 2017, 31(6): 401-409.
[7] Dongze LV,Zhaoke CHEN,Xiang XIONG,Yalei WANG,Wei SUN,Zehao LI. Microstructure and Tribological Property of C-TaC Coatings on Graphite Prepared by Chemical Vapor Deposition[J]. 材料研究学报, 2016, 30(9): 690-696.
[8] NIE Yanyan, SUN Xiaogang, CAI Manyuan, WU Xiaoyong, LIU Zhenhong, YUE Lifu. Graphitized Whisker-like Carbon Nanotubes as Electrodes for Supercapacitors[J]. 材料研究学报, 2016, 30(7): 538-644.
[9] ZHANG Hao, HUANG Xinjie, ZONG Zhifang, LIU Xiuyu. Preparation and Properties of SiO2 Based Hexadecanol-Palmitic Acid-Lauric Acid Microencapsulated Phase Change and Humidity Controlling Materials with Fine Particle Size[J]. 材料研究学报, 2016, 30(6): 418-426.
[10] Yunfeng TIAN,Zhen LI,Yang WANG,Ping ZENG,Lingyi JIANG. Preparation and Performance of a Phase Change Heat Storage Composite of Paraffin/Different Particle Sized Expanded Graphite[J]. 材料研究学报, 2015, 29(4): 262-268.
[11] Yujie KOU,Yongan NIU,Jiupeng ZHAO,Junkai LIU,Yao LI. Carbonization Treatment on Performance of Carbon Fibre Reinforced Polyimide Composite Materials[J]. 材料研究学报, 2014, 28(8): 573-578.
[12] Qiang XU,Shulin ZHAN,Qilong ZHANG,Jiansong SHENG,Hui YANG. Preparation and Properties of Nano-silicone Marine Reinforced Concrete Permeable Protective Coating[J]. 材料研究学报, 2014, 28(6): 443-447.
[13] Biao LV,Zhenfeng HU,Xiaohe WANG,Binshi XU. Effect of Relative Moving Speed on Microstructure of Flexible Friction Assisted Electrodeposited Ni Coating[J]. 材料研究学报, 2014, 28(4): 255-261.
[14] Zaoyu SHEN,Guanghong HUANG,Limin HE,Rende MU,Zhendong CHANG. Preparation and Thermal Stability of Large-sized TiAl/Ti3Al Micro-laminated Thin Sheets[J]. 材料研究学报, 2014, 28(4): 314-320.
[15] ZHANG Jin ZHU Peixian** DAI Jianqing ZHOU Shenggang CAO Yong. Studies on Interface Diffusion Layer of Ti/Al Composite Electrode Substrate Materials[J]. 材料研究学报, 2013, 27(6): 597-604.
No Suggested Reading articles found!