Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (7): 538-644    DOI: 10.11901/1005.3093.2015.746
Orginal Article Current Issue | Archive | Adv Search |
Graphitized Whisker-like Carbon Nanotubes as Electrodes for Supercapacitors
NIE Yanyan, SUN Xiaogang**(), CAI Manyuan, WU Xiaoyong, LIU Zhenhong, YUE Lifu
School of Mechatronics Engineering, Nanchang University, Nanchang 330031, China
Cite this article: 

NIE Yanyan, SUN Xiaogang, CAI Manyuan, WU Xiaoyong, LIU Zhenhong, YUE Lifu. Graphitized Whisker-like Carbon Nanotubes as Electrodes for Supercapacitors. Chinese Journal of Materials Research, 2016, 30(7): 538-644.

Download:  HTML  PDF(4857KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Whisker-like carbon nanotubes (WCNTs) were produced by chemical vapor deposition (CVD) and then purified by graphitization at high temperature. The WCNTs were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectra and thermogravimetric analysis (TGA). Water suspension consisted of WCNTs as functional material and cellulose fibers as matrix was prepared by speed-cutting procedure, and then WCNTs containing composite papers were prepared with the above suspension by vacuum filtration. The conductivity of the composite papers increased from 14.1 S/m to 325.1 S/m after incorporation of the graphitized WCNTs. A supercapacitor cell with two-electrodes was constructed with 1 mol/L LiPF6 as electrolyte. The electrochemical performance of supercapacitor was examined by cyclic voltammetry and galvanostatic charge/discharge. The results indicated that the supercapacitor has a maximum capacitance of 90 F/g by a scan rate of 1 mV / s. The specific energy and specific power reached 21.3 Wh/kg and 2.1 kW/kg respectively by a current density of 800 mA/g. These showed an excellent application prospect of the modified carbon nanotubes for supercapacitors.

Key words:  composite materials      whisker-like carbon nanotubes      graphitization      composite paper      supercapacitor     
Received:  20 December 2015     
Fund: *Supported by Jiangxi Education Bureau Program No KJLD 13006 and Program of Jiangxi Scientific and Technological Bureau Nos 2012ZBBE50012 & 20142BBE50071

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.746     OR     https://www.cjmr.org/EN/Y2016/V30/I7/538

Fig.1  SEM image of WCNTs (a), TEM images of raw WCNTs (b), and graphitized WCNTs (c) (d), the photos of WCNTs composite paper (e) (f)
Sample Surface resistivity
/Ωsq-1
Conductivity
/Sm-1
Graphitized WCNTs paper 6.2 325.2
Raw WCNTs paper 141.2 14.1
Table 1  Surface resistivity and conductivity of graphitized WCNTs and raw WCNTs composite paper
Fig.2  SEM images of graphitized WCNTs composite paper at different magnifications: low magnification (a), high magnification (b)
Fig.3  XRD (a), Raman (b) patterns of graphitized WCNTs and raw WCNTs
Fig.4  EDS images of raw WCNTs (a) and graphitized WCNTs (b)
Fig.5  TGA images of raw WCNTs (a) and graphitized WCNTs (b)
Fig.6  Cyclic voltammetry curves of raw WCNTs (a), and graphitized WCNTs (b) composite paper electrodes, Specific capacitance versus scan rate for raw WCNTs and graphitized WCNTs composite paper electrodes (c)
Fig.7  Galvanostatic charge/discharge curves of raw WCNTs (a), and graphitized WCNTs (b) composite paper electrodes, specific capacitance versus current density for raw WCNTs and graphitized WCNTs composite paper electrodes (c)
Fig.8  Ragone plot for raw WCNTs and graphitized WCNTs composite paper electrodes at different current density from 100 mA/g to 800 mA/g
1 B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (New York Springer Science & Business Media, 2013)p.11
2 S. Iijima, Helical microtubules of graphitic carbon, Nature, 354(6348), 56(1991)
3 J. P. Salvetat, J. M. Bonard, N. H. Thomson, A. J. Kulik, L. Forro, W. Benoit, L. Zuppiroli, Mechanical properties of carbon nanotubes, Appl. Phys. A, 69(3), 255(1999)
4 B. I. Yakobson, P. Avouris, Mechanical Properties of Carbon Nanotubes (Berlin, Springer Berlin Heidelberg, 2001) p.287
5 R. S. Ruoff, D. C. Lorents, Mechanical and thermal properties of carbon nanotubes, Carbon, 33(7), 925(1995)
doi: 10.1016/0008-6223(95)00021-5
6 T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, T. Thio, Electrical conductivity of individual carbon nanotubes, Nature, 354(6586), 54(1996)
doi: 10.1038/382054a0
7 HE Tianbing, HU Renwei, HE Xiaolei, LI Peiyong, Progress in research on carbon nanotube reinforced metal matrix composites, J .Mater. Eng., 43(10), 91(2015)
(何天兵, 胡仁伟, 何晓磊, 李沛勇, 碳纳米管增强金属基复合材料的研究进展, 材料工程, 43(10), 91(2015))
doi: 10.11868/j.issn.1001-4381.2015.10.015
8 LIU Gu, WANG Liuying, CHEN Jianliang, WANG Wei, WU Yongfa, Progress in research on carbon nanotubes microware absorbers, J. Mater. Eng., 43(1), 104(2015)
(刘顾, 汪刘应, 程建良, 王炜, 吴永发, 碳纳米管吸波材料研究进展, 材料工程, 43(1), 10(2015))
doi: 10.11868/j.issn.1001-4381.2015.01.018
9 P. X. Hou, C. Liu, H. M. Cheng, Purification of carbon nanotubes, Carbon, 46(15), 2003(2008)
doi: 10.1016/j.carbon.2008.09.009
10 S. Porro, S. Musso, M. Vinante, L. Vanzetti, M. Anderle, F. Trotta, A. Tagliaferro, Purification of carbon nanotubes grown by thermal CVD, Physica E, 37(1), 58(2007)
doi: 10.1016/j.physe.2006.07.014
11 LI Chensha, CAO Maosheng, HU Xiaoqing, LU Weizhe, LI Zhi, LIANG Ji, LIU Haitao, QIU Chengjun, ZHANG Jingdong, High temperature graphitizing carbon nanotube, carbon nanotube, Aeronautical Manufacturing Technology, (3), 37(2003)
(李辰砂, 曹茂盛, 胡晓清, 卢伟哲, 李志, 梁吉, 刘海涛, 邱成军, 张景东, 碳纳米管粉体的高温石墨化处理, 航空制造技术, (3), 37(2003))
12 V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, C. Galiotis, Chemical oxidation of multiwalled carbon nanotubes, Carbon, 46(6), 833(2008)
doi: 10.1016/j.carbon.2008.02.012
13 M. F.De Volder, S. H. Tawfick, R. H. Baughman, R. H. Baughman, A. J. Hart, Carbon nanotubes: present and future commercial applications, Science, 339(6119), 535(2013)
14 Y. J. Kang, H. Chung, C. H. Han, W. Kim, All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes, Nanotechnol, 23(6), 065401(2012)
doi: 10.1088/0957-4484/23/6/065401 pmid: 22248712
15 S. Hu, R. Rajamani, X. Yu, Flexible solid-state paper based carbon nanotube supercapacitor, Appl. Phys. Lett., 100(10), 104103(2012)
doi: 10.1063/1.3691948
16 L. Hu, J. W. Choi, Y. Yang, S. Jeong, F. La Mantia, L. F. Cui, Y. Cui, Highly conductive paper for energy-storage devices, PNAS, 106(51), 21490(2009)
doi: 10.1073/pnas.0908858106 pmid: 19995965
17 Y. J. Kang, B. Kim, H. Chung, W. Kim, Fabrication and characterization of flexible and high capacitance supercapacitors based on MnO2/CNT/papers, Synth. Met., 160(23), 2510(2010)
doi: 10.1016/j.synthmet.2010.09.036
18 XU Bin, WU Feng, SU Yuefeng, CAO Gaoping, CHEN Shi, YANG Yusheng, Preparation of activated carbon nanotubes and their elrctrochemical capacitive performance in organic electrolyte, Acta Chim. Sin., 65(21), 2387(2007
)(徐斌, 吴锋, 苏岳锋, 曹高萍, 陈实, 杨裕生, 活性碳纳米管的制备及其在有机电解液中的电容性能研究, 化学学报, 65(21), 2387(2007))
[1] PENG Zitong, GAO Yanrong, YAO Chu, YAO Junlong, ZHU Wenwen, XU Wen, JIANG Xueliang. Preparation and Photocatalytic Activity of Fe/Yb Co-doped Titanium Dioxide Hollow Sphere[J]. 材料研究学报, 2021, 35(2): 135-142.
[2] CHEN Feng, ZHOU Yang, CHEN Yannan, LIN Zongling, QIN Fengxiang. Fabrication of Nano-porous Co by Dealloying for Supercapacitor and Azo-dye Degradation[J]. 材料研究学报, 2020, 34(12): 905-914.
[3] Shengyang PANG,Feng LIU,Chenglong HU,Shijun WANG,Sufang TANG. Effect of Carbon Matrix Structure on Electrical Properties of C/C Composites[J]. 材料研究学报, 2019, 33(12): 935-941.
[4] Jingbiao FAN, Zhiwei LI, Jianmin LUO, Yan HUANG, Nannan CHEN, Hongyu MI. Preparation and Electrochemical Performance of Nitrogen-Doped Porous Carbon with MgCO3 as Template[J]. 材料研究学报, 2018, 32(8): 599-606.
[5] Zhaohui GAO, Jianwei CHI, Maoyong TANG, Yanjun WANG, Jianping XU. Synthesis and Electrochemical Performance of Spherical Porous Vanadium Nitride[J]. 材料研究学报, 2018, 32(11): 867-873.
[6] Ning MI, Lei ZHAO, Maocheng LIU. NiO Electrode Synthesized via Sol-gel Method and Super-Capacitive Performance[J]. 材料研究学报, 2017, 31(9): 714-720.
[7] Dongze LV,Zhaoke CHEN,Xiang XIONG,Yalei WANG,Wei SUN,Zehao LI. Microstructure and Tribological Property of C-TaC Coatings on Graphite Prepared by Chemical Vapor Deposition[J]. 材料研究学报, 2016, 30(9): 690-696.
[8] ZHANG Hao, HUANG Xinjie, ZONG Zhifang, LIU Xiuyu. Preparation and Properties of SiO2 Based Hexadecanol-Palmitic Acid-Lauric Acid Microencapsulated Phase Change and Humidity Controlling Materials with Fine Particle Size[J]. 材料研究学报, 2016, 30(6): 418-426.
[9] Zhipeng PANG,Xiaogang SUN,Xiaoyuan CHENG,Xiaoyong WU,Qi FU. Effect of Carbon Nanotube Content on Electromagnetic Interference Shielding Performance of Carbon Nanotube-Cellulose Composite Materials[J]. 材料研究学报, 2015, 29(8): 583-588.
[10] Yunfeng TIAN,Zhen LI,Yang WANG,Ping ZENG,Lingyi JIANG. Preparation and Performance of a Phase Change Heat Storage Composite of Paraffin/Different Particle Sized Expanded Graphite[J]. 材料研究学报, 2015, 29(4): 262-268.
[11] Yujie KOU,Yongan NIU,Jiupeng ZHAO,Junkai LIU,Yao LI. Carbonization Treatment on Performance of Carbon Fibre Reinforced Polyimide Composite Materials[J]. 材料研究学报, 2014, 28(8): 573-578.
[12] Qiang XU,Shulin ZHAN,Qilong ZHANG,Jiansong SHENG,Hui YANG. Preparation and Properties of Nano-silicone Marine Reinforced Concrete Permeable Protective Coating[J]. 材料研究学报, 2014, 28(6): 443-447.
[13] Zaoyu SHEN,Guanghong HUANG,Limin HE,Rende MU,Zhendong CHANG. Preparation and Thermal Stability of Large-sized TiAl/Ti3Al Micro-laminated Thin Sheets[J]. 材料研究学报, 2014, 28(4): 314-320.
[14] ZHANG Jin ZHU Peixian** DAI Jianqing ZHOU Shenggang CAO Yong. Studies on Interface Diffusion Layer of Ti/Al Composite Electrode Substrate Materials[J]. 材料研究学报, 2013, 27(6): 597-604.
[15] QIU Jun, CHEN Dianbing, QIU Tingting, LI Dan, JIN Lei. Aging Properties of Carbon Nanotubes/Carbon Fiber/Epoxy Resin Composites[J]. 材料研究学报, 2013, 27(2): 131-138.
No Suggested Reading articles found!