Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (5): 387-393    DOI: 10.11901/1005.3093.2016.385
Orginal Article Current Issue | Archive | Adv Search |
Preparation and Flame-retartant Property of LaCl3 Doped Polyacrylamide/Silica Ash-based Flame Retardant Materials
Yachao WANG(), Jiangping ZHAO, Yuanyuan TONG, Jianxiong DING
College of Materials & Mineral Resources, Xi'an University of Architecture and Technology Xi'an 710055, China
Cite this article: 

Yachao WANG, Jiangping ZHAO, Yuanyuan TONG, Jianxiong DING. Preparation and Flame-retartant Property of LaCl3 Doped Polyacrylamide/Silica Ash-based Flame Retardant Materials. Chinese Journal of Materials Research, 2017, 31(5): 387-393.

Download:  HTML  PDF(2577KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

LaCl3 doped organic-inorganic hybrid flame-retardant materials of LaCl3/PAM/ SiO2nH2O were prepared with Na2SiO39H2O-KOH modified silica ash as base material, and with PAM, LaCl37H2O and Na4P2O710H2O as additives. Then the effect of the addition amount of PAM, LaCl37H2O and Na4P2O710H2O on the flame-retardant property of the LaCl3/PAM/ SiO2nH2O was investigated via orthogonal experiments L9(34). In the meanwhile, the flame-retardant materials of LaCl3/PAM/ SiO2nH2O were characterized by using TG/DSC, SEM, XRD and FT-IR. Results show that the LOI of the cotton canvas with an applied surface film of LaCl3/PAM/SiO2nH2O can reach 39.2%; the sequence of the effectiveness of the additives on the flame-retardant property of LaCl3/PAM/SiO2nH2O can be ranked as PAM > LaCl37H2O > Na4P2O710H2O according to the results of range analysis. The results of XRD and SEM showed that the PAM favored the formation of denser amorphous swelling silica layers, the results of FT-IR and TG/DSC confirmed that the prepared flame-retardant materials held excellent high-temperature thermal stability, leading to the occurrence of heat insulation and fire-resistance effects.

Key words:  composite      flame retardant      variance analysis      microstructure      mechanism     
Received:  06 July 2016     
Fund: Supported by Shanxi National Science Foundation and Natural Science Fund of Education Department

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.385     OR     https://www.cjmr.org/EN/Y2017/V31/I5/387

Levels Factors
PAM(A) Na4P2O710H2O (B) LaCl37H2O (C)
1 0.5 0.5 0.3
2 1 1 0.7
3 3 3 1.2
Table 1  Factors and levels of orthogonal experiments (%, mass fraction)
No. A B C Nullable LOI/%
S1 1 1 1 1 26.9
S2 1 2 2 2 27.6
S3 1 3 3 3 29.4
S4 2 1 2 3 36.4
S5 2 2 3 1 39.2
S6 2 3 1 2 32.1
S7 3 1 3 2 32.4
S8 3 2 1 3 28.6
S9 3 3 2 1 31.2
k1 27.97 31.80 29.20 32.43
k2 35.90 31.90 31.73 30.70
k3 30.73 30.90 33.67 31.47
Range (R) 7.93 1 4.47 1.73
Table 2  Experiment scheme and results analysis
Variance Sum of variances DOF Mean square F value Fa Significance level
A 97.29 2 48.64 30.64 F0.05(2,4)=6.94
F0.01(2,4)=18.0
Highly
B 1.82 2 0.91 0.57 No
C 30.11 2 15.06 9.48 Yes
e 4.53 2 2.27
eΔ 6.35 4 1.59
Total 140.11
Table 3  Variance analysis of orthogonal experiments
Fig.1  XRD spectra of samples (a) silica ash;(b) S1;(c) S4, (d) S7, (e) S1 after firing, (f) S4 after firing, (g) S7 after firing
Fig.2  FT-IR spectra of samples (a) silica ash; (b) S1; (c) S4; (d) S7
Fig.3  FT-IR spectra of samples after burning (a) silica ash; (b) S1; (c) S4; (d) S7
Fig.4  TG/DSC curves of sample (a) S1, (b) S4, (c) S7
Fig.5  Morphologies of samples (a) S1; (b) S1 after burning; (c) S4; (d) S4 after burning; (e) S7; (f) S7 after burning
Fig.6  Schematic diagram of flame retardant mechanism
[1] Bikiaris D.Can nanoparticles really enhance thermal stability of polymers? Part II: an overview on thermal decomposition of polycondensation polymers[J]. Thermochim. Acta, 2011, 523: 25
[2] Ullah S, Ahmad F, Shariff A M, et al.Synergistic effects of kaolin clay on intumescent fire retardant coating composition for fire protection of structural steel substrate[J]. Polym. Degrad. Stabil., 2014, 110: 91
[3] Majidi B.Geopolymer technology, from fundamentals to advanced applications: a review[J]. Mater. Technol., 2009, 24:79
[4] Qian Y, Ji J, Wang F, et al.Influence of sodium pyrophosphate on dispersion of bentonite[J]. Paint Coat. Ind., 2010, 40(10): 8(钱蕴, 吉静, 王峰等. 焦磷酸钠对改性膨润土分散性的影响[J]. 涂料工业, 2010, 40(10): 8)
[5] Yang L L.Study on adsorption of phenol-based wastewater by sodium pyrophosphate modified rectorite[J]. New Chem. Mater., 2013, 41(4): 154(杨连利. 焦磷酸钠改性累托石吸附处理含苯酚废水的研究[J]. 化工新型材料, 2013, 41(4): 154)
[6] Tan H B, Lin C L, Ma B G, et al.Effect of phosphate on the hydration of portland cement at early age[J]. J. Wuhan Univ. Technol., 2015, 37(2): 1(谭洪波, 林超亮, 马保国等. 磷酸盐对普通硅酸盐水泥早期水化的影响[J]. 武汉理工大学学报, 2015, 37(2): 1)
[7] Zhang H F, Xiao H N, Ye C, et al.Study on the composite deflocculates of bentonite suspensions[J]. China Ceram., 2011, 47(12): 59(张海峰, 肖汉宁, 叶昌等. 膨润土泥浆复合解凝剂的研究与应用[J]. 中国陶瓷, 2011, 47(12): 59)
[8] Han X T, Chang Q, Wang G, et al.Removal of Pb(Ⅱ) in wastewater with heavy metal flocculants PEX[J]. Environ. Sci. Technol., 2013, 36(1): 44(韩晓婷, 常青, 王刚等. 重金属絮凝剂PEX对水中铅的去除性能研究[J]. 环境科学与技术, 2013, 36(1): 44 )
[9] Liu H H, Shi D J, Duan F, et al.Fabrication of polyacrylamide inverse opal photonic crystal Films based on co-deposition[J]. Mater. Lett., 2015, 150: 5
[10] Tekin N, Demirbas ?, Alkan M.Adsorption of cationic polyacrylamide onto kaolinite[J]. Micropor. Mesopor. Mater., 2005, 85: 340
[11] Zhao Q, Sun J Z, Lin Y T, et al.Study of the properties of hydrolyzed polyacrylamide hydrogels with various pore structures and rapid pH-sensitivities[J]. React. Funct. Polym., 2010, 70: 602
[12] Alongi J, Han Z D, Bourbigot S.Intumescence: Tradition versus novelty. A comprehensive review[J]. Prog. Polym. Sci., 2015, 51: 28
[13] Shen Y L, Gong W G, Zheng B C, et al.Synergistic effect of Ni-based bimetallic catalyst with intumescent flame retardant on flame retardancy and thermal stability of polypropylene[J]. Polym. Degrad. Stabil., 2016, 129: 114
[14] Zaharia A, Sarbu A, Radu A L, et al.Preparation and characterization of polyacrylamide-modified kaolinite containing poly [acrylic acid-co-methylene bisacrylamide] nanocomposite hydrogels[J]. Appl. Clay Sci., 2015, 103: 46
[15] Yang S Y, Jia Z X, Liu L, et al.Preparation of a multi-functional rare earth accelerator (La-GDTC) and Its rubber accelerating vulcanization property[J]. J. Chin. Soc. Rare Earths, 2014, 32: 611(杨树颜, 贾志欣, 刘岚等. 多功能稀土促进剂(La-GDTC)的制备及其硫化性能研究[J]. 中国稀土学报, 2014, 32: 611)
[16] Tarannum S, Ahmed N, Siddiqui Z N.LaCl3/nano-SiO2: A novel nanocatalyst for efficient synthesis of functionalized 2,3-dihydroquinazolinones[J]. Catal. Commun., 2015, 66: 60
[17] Mcgillicuddy N, Nesterenko E P, Nesterenko P N, et al.A new N-hydroxyethyliminodiacetic acid modified core-shell silica phase for chelation ion chromatography of alkaline earth, transition and rare earth elements[J]. J. Chromatogr., 2013, 1321A: 56
[18] Wang Y C, Zhao J P.Preparation and microstructure of chemical modified diatomite as flame retardant[J]. Chin. J. Mater. Mater. Res., 2016, 30(7): 524(王亚超, 赵江平. 化学改性硅藻土制备阻燃材料及微结构研究[J]. 材料研究学报, 2016, 30(7): 524)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[3] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[5] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[6] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[7] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[8] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[9] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[10] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[11] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[12] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[13] WANG Wei, PENG Yiqing, DING Shijie, CHANG Wenjuan, GAO Yuan, WANG Kuaishe. Tribological Properties of Graphite-based Solid Lubricating Coatings for Ti-6Al-4V Alloy at 500~800oC[J]. 材料研究学报, 2023, 37(6): 432-442.
[14] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[15] XIA Bo, WANG Bin, ZHANG Peng, LI Xiaowu, ZHANG Zhefeng. Effect of Tempering Temperature on Microstructure and Impact Properties of Two High-strength Leaf Spring Steels[J]. 材料研究学报, 2023, 37(5): 341-352.
No Suggested Reading articles found!