Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (3): 192-198    DOI: 10.11901/1005.3093.2015.296
Orginal Article Current Issue | Archive | Adv Search |
Anticorrosion Mechanism of Epoxy Coating with Nano-flake Barium Phosphate
SUN Wei1, ZHU Liwei2, LIU Fuchun1,**(), HAN En-hou1, KE Wei1, QIAN Zhouhai2, JIE Ganxin3
1. Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. State Grid Zhejiang Electric Power Research Institute, Hangzhou 310014, China
3. State Key Laboratory of Environmental Adaptability for Industrial Products, China National Electric Apparatus Research Institute Co., Ltd,Guangzhou 510633, China
Cite this article: 

SUN Wei, ZHU Liwei, LIU Fuchun, HAN En-hou, KE Wei, QIAN Zhouhai, JIE Ganxin. Anticorrosion Mechanism of Epoxy Coating with Nano-flake Barium Phosphate. Chinese Journal of Materials Research, 2016, 30(3): 192-198.

Download:  HTML  PDF(2951KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nano-flake barium phosphate was prepared by hydrothermal synthesis, and then the effect of which as pigment on the corrosion behavior of epoxy coating was investigated by means of electrochemical impedance spectroscopy (EIS) and salt spray tests. The results show that the nano-flake barium phosphate in the epoxy coating can react with iron oxide, the corrosion product of metal substraste, to generate an insoluble FePO4 as a barrier on the corrosion spot, thereby to enhance the corrosion resistance of the coating; Among others, an epoxy coating with 5 mass% nano flake barium phosphate shows the highest corrosion resistance.

Key words:  composite      nanometer phosphate      transmission line tower      protection for electric power facilities     
Received:  19 May 2015     
ZTFLH:  TB174  
Fund: *Supported by the Key Technology of Corrosion Control on Wind Power Equipment Academician Workstation Project 2013B090400023 and State Grid Practical Project No.zdk/gw001-2012.
About author:  **To whom correspondence should be addressed, Tel: (024)23915895, E-mail: fcliu@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.296     OR     https://www.cjmr.org/EN/Y2016/V30/I3/192

Fig.1  SEM micrograph diagram of nanometer barium phosphate
Fig.2  TEM micrograph of nanometer barium phosphate
Fig.3  XRD diagram of nanometer barium phosphate
Fig.4  Photos of the coated Q235 steel samples after salt spray test for 2000 h, (a) B0, (b) B1, (c) B3 and (d) B5
Fig.5  SEM micrographs of the scribe sections of coated panels after 2000 h salt spray test. (a) B0, (b) B1, (c) B3 and (d) B5
Fig.6  Bode plots of coated panels with different loading of nano-Ba3(PO4)2 after different immersiong time in 3.5%NaCl solution, (a) B0, (b) B1, (c) B3 and (d) B5
Fig.7  Equivalent circuit models of the coated panels at different immersion stages. (a) with one time constant, (b) with two-time constant
Fig.8  The change of coating resistance with immersion time
Fig.9  The change of water absorption of the coatings with immersion time
Fig.10  XRD diagram of the interface between the coating and Q235 substrate
1 LI Wanmo, SONG Yushu, DENG Shuzhen, The Corrosion of Coating Metal (Changsha: National University of Defense Technology Press, 2003)
(黎完模, 宋玉苏, 邓淑珍, 涂装金属的腐蚀(长沙, 国防科技大学出版社, 2003))
2 LIU Hongwei, XU Gang, SONG Guangling, LIN Haichao, CAO Chu'nan, Journal of Chinese Society for Corrosion and Protection, 17(3), 215(1998)
(刘宏伟, 许刚, 宋光铃, 林海潮, 曹楚南, 防锈颜料三聚磷酸铝作用机理的EIS研究, 中国腐蚀与防护学报, 17(3), 215(1998))
3 DONG Yanming, Handbook of Polymer (Beijing,Sinopec Press, 2004)
(董炎明, 高分子分析手册 (北京, 中国石化出版社, 2004)
4 Y. S. Hao, F. C. Liu, En-Hou Han, Saima Anjum, G. B. Xu, The mechanism of inhibition by zinc phosphate in an epoxy coating, Corrosion Science, 69, 77(2013)
5 FANG Jianjun, MA Shengjun, SHEN Haiying, Research, anticorrosive properties of modified zinc phosphate coating industry, 39(10), 57(2009)
(方健君, 马胜军, 沈海鹰, 改性磷酸锌的防腐性能研究, 涂料工业, 39(10), 57(2009))
6 YANG Zongzhi, Department of development of zinc phosphate/non-toxic anticorrosive pigment, China Coatings, 6, 41(2001)
(杨宗志, 磷酸锌系/无毒防锈颜料的发展, 中国涂料, 6, 41(2001))
7 CAO Jia, SHAO Yawei, ZHANG Tao, MENG Guozhe, Roles of zinc phosphate on the corrosion of scratched epoxy coating, Journal of Chinese Society for Corrosion and Protection, 29(6), 437(2009)
(曹佳, 邵亚微, 张涛, 孟国哲, 磷酸锌对环氧涂层破损处金属的缓蚀作用, 中国腐蚀与防护学报, 29(6), 437(2009))
8 F. Zhang, Z. S. Zhao, R. Q. Tan, Selective and effective adsorption of methyl blue by barium phosphate nano-flake, Journal of Colloid and Interface Science, 386, 277(2012)
9 D. M. Brasher, A. H. Kingsbury, Plasma-polymerized coatings used as presentment for aluminum alloys, Journal of Applied Chemistry, 4, 62(1954)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!