Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (4): 337-342    
  研究论文 本期目录 | 过刊浏览 |
β--SiC纳米丝拉伸变形的分子动力学研究
韩同伟1;2 ;  贺鹏飞1; 王健2; 郑百林1
1.同济大学航空航天与力学学院 上海 200092
2.贝尔法斯特女王大学 贝尔法斯特 英国 BT9 5AH
Molecular dynamics simulation of  β--SiC nanowire under uniaxial tension
HAN Tongwei 1;2;   HE Pengfei 1;   WANG Jian 2;  ZHENG Bailin 1
1.School of Aerospace Engineering and Applied Mechanics; Tongji University; Shanghai 200092; China
2.The Queen's University of Belfast Belfast UK BT9 5AH
引用本文:

韩同伟 贺鹏飞 王健 郑百林. β--SiC纳米丝拉伸变形的分子动力学研究[J]. 材料研究学报, 2009, 23(4): 337-342.
, , , . Molecular dynamics simulation of  β--SiC nanowire under uniaxial tension[J]. Chin J Mater Res, 2009, 23(4): 337-342.

全文: PDF(1351 KB)  
摘要: 

采用Tersoff势对具有不同截面尺寸的β--SiC纳米丝的[001]向拉伸力学性能进行了分子动力学模拟, 得到了纳米尺度下β--SiC纳米丝的应力--应变演化关系, 研究了β--SiC纳米丝的力学性能与特征尺寸的关系. 模拟结果表明, β--SiC纳米丝在常温下具有不同于宏观陶瓷材料的室温脆性, 在断裂前发生了明显的塑性变形, 塑性应变达到11%. 截面尺寸对纳米丝的力学性能有显著的影响, 截面尺寸越大, 初始杨氏模量越大, 抗拉强度越高.

关键词 材料科学基础学科拉伸力学性能分子动力学β--SiC尺度效应纳米丝    
Abstract

The tension mechanical properties of the [001]  β--SiC nanowires with different cross--sections were investigated using molecular dynamics simulation with Tersoff bond--order interatomic potential. The stress--strain curves were obtained and analyzed in order to elucidate the scale effect on the mechanical properties of the nanowires. The simulation results show that the  β--SiC nanowires exhibit large plastic deformation for at least 11% under axial strain at room temperature, which is rarely observed for their macro counterparts
especially at low temperature. It is also found that the influence of the cross section size of the nanowires on the mechanical properties is remarkable; with increasing of the size the tensile strength and Young's modulus of the nanowires increase.

Key wordsfoundational discipline in materials science    tension mechanical properties    molecular dynamics    β--SiC    scale effects    nanowire
收稿日期: 2008-12-18     
ZTFLH: 

TB321

 
基金资助:

国家自然科学基金10472084资助项目.

1 ZHANG Lide, MOU Jimei, NanoMaterial and Nanostructure (Beijing, Science Press, 2002) p.27
(张立德, 牟季美,   纳米米材料和纳米结构  (北京, 科学出版社, 2002) p.27)
2 ZHUJing, NanoMaterial and NanoDevice, (Beijing, Tsinghua Publishing Company, 2003) p.4
(朱 静,  纳米材料和器件,  第一版, (北京, 清华大学出版社, 2003) p.4)
3 M.P.Allen, D.J.Tildesley, Computer Simulation of Liquids (Oxford, Clarendon Press, 1991) p.71–82
4 XU Zhou, WANG Xiuxi, LIANG Haiyi, Molecular dynamics simulation of the strain rate effect and size effect for Cu nanowire, Chinese Journal of Materials Research, 17(3), 262(2003)
(徐洲, 王秀喜, 梁海弋, 铜纳米丝的应变率和尺寸效应的分子动力学模拟, 材料研究学报,  17(3), 262(2003))
5 Jakob Schiøtz, Karsten W. Jacobsen, A Maximum in the Strength of Nanocrystalline, Science, 301(5), 1357(2003)
6 D.L.Chen, T.C.Chen, Mechanical properties of Au nanowires under uniaxial tension with high strain–rate by molecular dynamics, Nanotechnology, 16(12), 2972(2005)
7 R.Komanduria, N.Chandrasekarana, L.M.Raff, Molecular dynamics (MD) simulation of uniaxial tension of some single–crystal cubic metals at nanolevel, International Journal of Mechanical Sciences, 43(10), 2237(2001)
8 S.J.A.Koh, H.P.Lee, C.Lu, Q.H.Cheng, Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: Temperature and strain–rate effects, Physical Review B, 72(8), 2237(2005)
9 S.J.A.Koh, H.P.Lee, Molecular dynamics simulation of size and strain rate dependent mechanical response of FCC metallic nanowires, Nanotechnology, 17(14), 3451(2007)
10 H.A.WU, Molecular dynamics study on mechanics of metal nanowire, Mechanics Research Communications, 33(1), 9(2006)
11 Y.H.Wen, Z.H.Zhua, G.F.Shao, R.Z.Zhu, The uniaxial tensile deformation of Ni nanowire: atomic–scale computer simulations, Physica E, 27(1–2), 113(2005)
12 D.Wolf, V.Yamakov, S.R.Phillpot, A.Mukherjee, H.Gleiter, Deformation of nanocrystalline materials by molecular–dynamics simulation: relationship to experiments Acta Materialia, 53(1), 1(2005)
13 D.X.Wang, J.W.Zhao, S.HU, X.Pin, S.Liang, Y.H.Liu, S.Y.Deng, Where, and How, Does a Nanowire Break? Nano Letters, 7(5), 1208(2007)
14 Lin YUAN, Debin SHAN, Bin GUO, Molecular dynamics simulation of tensile deformation of nano–single crystal aluminum,Journal of Materials Processing Technology, 184(1–3), 1(2007)
15 J.B.Casady, R.W.Johnson, Status of silicon carbide (SiC) as a wide–bandgap semiconductor for high–temperature application: A review, Solid–State Electron, 39(10), 1409(1996)
16 Daisuke Nakamura, Itaru Gunjishima, Satoshi Yamaguchi, Tadashi Ito, Atsuto Okamoto, Hiroyuki Kondo, Shoichi Onda, Kazumasa Takatori, Ultrahigh–quality silicon carbide single crystals, Nature, 430(7003), 1009(2004)
17 M.Schaible, Empirical Molecular Dynamics Modeling of Silicon and Silicon Dioxide: A Review, Critical Reviews in Solid State and Materials Science, 24(4), 265(1999)
18 H.Kikuchi, R.K.Kalia, A.Nakano, P.Vashishta, P.S.Branicio, Brittle dynamic Fracture of Crystalline Cubic Silicon Carbide (3C–SiC) via Molecular Dynamics Simulation, Journal of Applied Physics, 98(10), 103524(1–4)(2005)
19 K.Mizushima, M.J.Tang, S.Yip, Toward multiscale modelling: the role of atomistic simulations in the analysis
of Si and SiC under hydrostatic compression, Journal of Alloys and Compounds, 279(1), 70(1998)
20 L.J.Porter, J.Li, S.Yip, Atomistic modeling of finite–temperature properties of β–SiC. I. Lattice vibrations,
heat capacity, and thermal expansion, Journal of Nuclear Materials, 246(1), 53(1997)
21 F.Gao, W.J.Weber, M.Posselt, V.Belko, Atomistic study of intrinsic defect migration in 3C–SiC, Physical Review B, 69(24), 245205(2004)
22 J.Tersoff, Modeling solid–state chemistry: Interatomic potentials for multicomponent systems, Physical Review B, 39(8), 5566(1989)

[1] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[2] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[3] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[4] 孙艺, 韩同伟, 操淑敏, 骆梦雨. 氟化五边形石墨烯的拉伸性能[J]. 材料研究学报, 2022, 36(2): 147-151.
[5] 谢明玲, 张广安, 史鑫, 谭稀, 高晓平, 宋玉哲. Ti掺杂MoS2薄膜的抗氧化性和电学性能[J]. 材料研究学报, 2021, 35(1): 59-64.
[6] 施渊吉, 陈显冰, 吴修娟, 王红军, 郭训忠, 黎军顽. 基于分子动力学模拟的纳米多晶α-碳化硅变形机制[J]. 材料研究学报, 2020, 34(8): 628-634.
[7] 岳颗, 刘建荣, 杨锐, 王清江. Ti65合金的初级蠕变和稳态蠕变[J]. 材料研究学报, 2020, 34(2): 151-160.
[8] 鲁效庆,张全德,魏淑贤. A-π-D-π-A型吲哚类染料敏化剂的光电特性[J]. 材料研究学报, 2020, 34(1): 50-56.
[9] 李学雄,徐东生,杨锐. 钛合金双态组织高温拉伸行为的晶体塑性有限元研究[J]. 材料研究学报, 2019, 33(4): 241-253.
[10] 刘庆生, 曾少军, 张丹城. 基于细观结构的阴极炭块钠膨胀应力数值分析及实验验证[J]. 材料研究学报, 2017, 31(9): 703-713.
[11] 马志军, 莽昌烨, 王俊策, 翁兴媛, 司力玮, 关智浩. 三种金属离子掺杂对纳米镍锌铁氧体吸波性能的影响[J]. 材料研究学报, 2017, 31(12): 909-917.
[12] 黄莉. 石蜡/水相变乳液的稳定性能和储能容量[J]. 材料研究学报, 2017, 31(10): 789-795.
[13] 柴卫红, 汪焰恩, 魏庆华, 杨明明, 李欣培, 魏生民. 骨支架3D打印成型粘结机理的分子动力学研究*[J]. 材料研究学报, 2016, 30(8): 568-574.
[14] 周心龙,刘祖亮,王晓鸣,郑宇,施群荣. ANPyO高温下热分解过程的分子动力学模拟*[J]. 材料研究学报, 2016, 30(12): 940-946.
[15] 朱良,王晶,李晓慧,锁红波,张亦良. 基于堆焊成形钛合金高周疲劳实验数据的R-S-N模型[J]. 材料研究学报, 2015, 29(9): 714-720.