Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (2): 136-144    DOI: 10.11901/1005.3093.2016.309
  本期目录 | 过刊浏览 |
功能化石墨烯-碳纳米管协同强韧化HDPE纳米复合材料的制备和性能
卞军1(),王刚1,周醒1,蔺海兰1,王正君1,肖文强1,陈代强2
1 西华大学材料科学与工程学院 成都 610039
2 四川大学高分子科学与工程学院 成都 610065
Preparation and Performance of Nanocomposites HDPE Toughened-reinforced Synergetically with Functionalized Graphene and Carbon Nano-tubes
Jun BIAN1(),Gang WANG1,Xing ZHOU1,Hailan LIN1,Zhengjun WANG1,Wenqiang XIAO1,Daiqiang CHEN2
1 College of Materials Science and Engineering, Xi-Hua University, Chengdu, Sichuan 610039, China
2 College of Polymer Science and Engineering, Chengdu, Sichuan 610065, China
引用本文:

卞军,王刚,周醒,蔺海兰,王正君,肖文强,陈代强. 功能化石墨烯-碳纳米管协同强韧化HDPE纳米复合材料的制备和性能[J]. 材料研究学报, 2017, 31(2): 136-144.
Jun BIAN, Gang WANG, Xing ZHOU, Hailan LIN, Zhengjun WANG, Wenqiang XIAO, Daiqiang CHEN. Preparation and Performance of Nanocomposites HDPE Toughened-reinforced Synergetically with Functionalized Graphene and Carbon Nano-tubes[J]. Chinese Journal of Materials Research, 2017, 31(2): 136-144.

全文: PDF(2570 KB)   HTML
摘要: 

使用L-天门冬氨酸连接氧化石墨烯和酸化多壁碳纳米管(WMCNT-COOH)合成杂化材料LGC,然后用纳米填料LGC填充马来酸酐接枝高密度聚乙烯(HDPE-g-MAH),用熔融共混法制备了LGC/HDPE-g-MAH纳米复合材料。对LGC杂化填料和LGC/HDPE-g-MAH纳米复合材料进行了红外分析(FTIR)、拉曼光谱分析(Raman)、X射线衍射分析(XRD)、扫描电子显微镜分析(SEM)、示差扫描量热仪分析(DSC)、热失重分析(TGA)、动态热机械分析(DMA)和力学性能测试,研究了LGC含量对LGC/HDPE-g-MAH纳米复合材料性能的影响。结果表明:L-天门冬氨连接了GO和WMCNT-COOH,三者通过酰胺键连接在一起形成LGC杂化材料。LGC杂化材料内部官能团(氨基或羧基等)与聚合物基体中的羧基发生相互作用,改善了基体与填料之间的界面。根据DMA分析,损耗因子的变化证实了LGC与基体分子链之间强烈的相互作用。热学分析结果表明:纳米复合材料的结晶温度、熔融温度和热稳定性能都提高了。力学分析表明:随着LGC含量的增加,复合材料的拉伸强度和冲击强度呈现出先增大后降低的趋势;当LGC含量为0.5%和0.75%(质量分数)时,复合材料的冲击强度和拉伸强度分别比HDPE-g-MAH提高了95.9%和62.4%。

关键词 纳米复合材料HDPE-g-MAH石墨烯碳纳米管性能    
Abstract

Hybrid materials LGC were prepared with the L-aspartic acid connected graphene oxide and the acidified MWCNT (WMCNT-COOH) as raw materials. Then nanocomposites of LGC/HDPE-g-MAH with different amount of LGC were prepared by melt blending method with maleic anhydride grafted high density polyethylene (HDPE-g-MAH) as raw material and LGC as nano-fillers. The LGC hybrids and LGC/HDPE-g-MAH nanocomposites were characterized by using Fourier transform infrared spectroscopy (FTIR), Raman spectrum (Raman), X-ray diffraction (XRD), Scanning electron microscope (SEM), Differential scanning calorimetric analysis (DSC), Thermogravimetric analysis (TGA), Dynamic mechanical analysis (DMA) and mechanical properties characterizations. Results show that L-aspartic linked effectively GO and WMCNT-COOH, while the LGC formed via an amide bond. Functional groups (amino or carboxyl group, etc.) in LGC may interact with the carboxyl groups of polymer matrix, which improved the interface between the matrix and the filler; the changes of dissipation factor verified that strong interactions exist between LGC and HDPE-g-MAH matrix chains; therewith the crystallization temperature, melting temperature and thermal stability of nanocomposites were enhanced; while with the increasing amount of LGC, the tensile strength and impact strength of the nanocomposites increased first and then decreased, by addition of 0.5%and 0.75%(mass fraction) LGC, the impact strength and tensile strength of the nanocomposites were enhanced by 95.9% and 62.4% respectively in comparison , with the blank HDPE-g-MAH.

Key wordsnanocomposite    HDPE-g-MAH    graphene    carbon nano-tubes    property
收稿日期: 2016-06-03     
基金资助:西华大学“青年学者培养计划”基金(01201404);四川省教育厅一般科研基金(教育厅立项编号:17ZB0422);国家级大学生创新创业训练计划项目(201510623033,201410623006);四川省高校重点实验室开放研究基金项目(szjj2015-084,szjj2015-086))
图1  GO, GO-EDA, LGC 和MWCNT-COOH的红外光谱
图2  LGC/HDPE-g-MAH纳米复合材料的制备过程及反应机理
图3  MWCNTs-COOH, LGC, GO 和 GO-EDA的拉曼光谱
图4  石墨、L-天冬氨酸、MWCNT-COOH、GO-EDA、GO和LGC的XRD图谱
图5  LGC/HDPE-g-MAH纳米复合材料力学性能与LGC含量的关系
图6  LGC含量不同的LGC/HDPE-g-MAH纳米复合材料的DMA曲线
图7  LGC含量不同的LGC/HDPE-g-MAH纳米复合材料冲击断面的SEM照片
图8  LGC含量不同的LGC/HDPE-g-MAH纳米复合材料的TGA-DTG曲线
图9  LGC/HDPE-g-MAH纳米复合材料的DSC曲线
[1] Lu H J, Ma X Y, Zhu G M, et al.Limited-oxygen irradiation crosslinking modification of HDPE[J]. Polym. Mater. Sci. Eng., 2003, 19(4): 204
[1] (鹿海军, 马晓燕, 朱光明等. 高密度聚乙烯限氧辐射交联改性[J]. 高分子材料科学与工程, 2003, 19(4): 204)
[2] Liu S P, Zhang M, Hu H Z, et al.Development in modification of polyethylene[J]. J. Wuhan Inst. Technol., 2010, 32(3): 31
[2] (刘生鹏, 张苗, 胡昊泽等. 聚乙烯改性研究进展[J]. 武汉工程大学学报, 2010, 32(3): 31)
[3] Yang X M, Wang D, Tian Y.Performance of nano-MgO/high density polyethylene composites[J]. Acta Mater. Compos. Sin., 2016, 33: 234
[3] (杨晓明, 王铎, 田耘. 纳米MgO/高密度聚乙烯复合材料的性能[J]. 复合材料学报, 2016, 33: 234)
[4] Enoki T, Takai K.Unconventional electronic and magnetic functions of nanographene-based host-guest systems[J]. Dalton Trans., 2008, (29): 3773
[5] Berger C, Song Z M, Li X B, et al.Electronic confinement and coherence in patterned epitaxial graphene[J]. Science, 2006, 312: 1191
[6] Sutter P W, Flege J I, Sutter E A.Epitaxial graphene on ruthenium[J]. Nat. Mater., 2008, 7: 406
[7] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials[J]. Nature, 2006, 442: 282
[8] Sengupta R, Bhattacharya M, Bandyopadhyay S, et al.A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites[J]. Prog. Polym. Sci., 2011, 36: 638
[9] Galpaya D, Wang M C, Liu M N, et al.Recent advances in fabrication and characterization of graphene-polymer nanocomposites[J]. Graphene, 2012, 1: 30
[10] El Achaby M, Qaiss A.Processing and properties of polyethylene reinforced by graphene nanosheets and carbon nanotubes[J]. Mater. Des., 2013, 44: 81
[11] Jiang X, Drzal L T.Multifunctional high-density polyethylene nanocomposites produced by incorporation of exfoliated graphene nanoplatelets 2: Crystallization, thermal and electrical properties[J]. Polym. Comp., 2012, 33: 636
[12] Xiang D, Harkin-Jones E, Linton D, et al.Structure, mechanical, and electrical properties of high-density polyethylene/multi-walled carbon nanotube composites processed by compression molding and blown film extrusion[J]. J. Appl. Polym. Sci., 2015, 132: 42665
[13] Yang F, Bian J, He F X, et al.Preparation and properties of PP/PP-g-MAH/GS-EDA nanocomposites[J]. Eng. Plast. Appl., 2014, 42(9): 10
[13] (杨峰, 卞军, 何飞雄等. PP/PP-g-MAH/GS-EDA纳米复合材料的制备及性能[J]. 工程塑料应用, 2014, 42(9): 10)
[14] He F X, Bian J, Lin H L, et al.Preparation and characterization of functionalized nano-graphene sheet/PP-PP-g-MAH composites[J]. Acta Mater. Compos. Sin., 2015, 32: 47
[14] (何飞雄, 卞军, 蔺海兰等. 功能化纳米石墨烯片/PP-PP-g-MAH复合材料的制备与表征[J]. 复合材料学报, 2015, 32: 47)
[15] Li J M, Wang G, Chen L X, et al.Preparation and mechanical properties of polystyrene nanocomposites modified collaboratively by functionalized graphene sheets and carbon nanotubes[J]. China Plast. Indus., 2015, 43(4): 74
[15] (李佳镁, 王刚, 陈立兴等. 功能化石墨烯片/碳纳米管协同改性聚苯乙烯纳米复合材料的制备和力学性能研究[J]. 塑料工业, 2015, 43(4): 74)
[16] Yoo E J, Kim J, Hosono E, et al.Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries[J]. Nano Lett., 2008, 8: 2277
[17] Fan Z J, Yan J, Zhi L J, et al.A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors[J]. Adv. Mater., 2010, 22: 3723
[18] Yu D S, Dai L M.Self-assembled graphene/carbon nanotube hybrid films for supercapacitors[J]. J. Phys. Chem. Lett., 2010, 1: 467
[19] Worsley M A, Pauzauskie P J, Olson T Y, et al.Synthesis of graphene aerogel with high electrical conductivity[J]. J. Am. Chem. Soc., 2010, 132: 14067
[20] Guo W H, Liu C, Sun X M, et al.Aligned carbon nanotube/polymer composite fibers with improved mechanical strength and electrical conductivity[J]. J. Mate. Chem., 2012, 22: 903
[21] Zhao D M, Li Z W, Liu L D, et al.Progress of preparation and application of graphene/carbon nanotube composite materials[J]. Acta Chim. Sin., 2014, 72: 185
[21] (赵冬梅, 李振伟, 刘领弟等. 石墨烯/碳纳米管复合材料的制备及应用进展[J]. 化学学报, 2014, 72: 185)
[22] Wang G, Lin H L, He F X, et al.Research progress on synergistic modification of polymer nanocomposites by graphene and carbon nanotubes[J]. China Plast. Indus., 2014, 42(5): 7
[22] (王刚, 蔺海兰, 何飞雄等. 石墨烯/碳纳米管协同改性聚合物纳米复合材料的研究进展[J]. 塑料工业, 2014, 42(5): 7)
[23] Varshney V, Patnaik S S, Roy A K, et al.Modeling of thermal transport in pillared-graphene architectures[J]. ACS Nano, 2010, 4: 1153
[24] Tung V C, Chen L M, Allen M J, et al.Low-temperature solution processing of grapheme-carbon nanotube hybrid materials for high-performance transparent conductors[J]. Nano Lett., 2009, 9: 1949
[25] Hummers W S Jr, Offeman R E. Preparation of graphitic oxide[J]. J. Am. Chem. Soc., 1958, 80: 1339
[26] Saleh T A, Agarwal S, Gupta V K.Synthesis of MWCNT/MnO2 and their application for simultaneous oxidation of arsenite and sorption of arsenate[J]. Appl. Catal., 2011, 106B: 46
[27] Saleh T A.The influence of treatment temperature on the acidity of MWCNT oxidized by HNO3 or a mixture of HNO3/H2SO4[J]. Appl. Surf. Sci., 2011, 257: 7746
[28] Shin H J, Kim S M, Yoon S M, et al.Tailoring electronic structures of carbon nanotubes by solvent with electron-donating and-withdrawing groups[J]. J. Am. Chem. Soc., 2008, 130: 2062
[29] Voggu R, Rout C S, Franklin A D, et al.Extraordinary sensitivity of the electronic structure and properties of single-walled carbon nanotubes to molecular charge-transfer[J]. J. Phys. Chem., 2008, 112C: 13053
[30] Shen J L, Yang C Y, Li X W, et al.High-performance asymmetric supercapacitor based on nanoarchitectured polyaniline/graphene/carbon nanotube and activated graphene electrodes[J]. ACS Appl. Mater. Interfaces, 2013, 5: 8467
[31] Patole A S, Patole S P, Jung S Y, et al.Self assembled graphene/carbon nanotube/polystyrene hybrid nanocomposite by in situ microemulsion polymerization[J]. Eur. Polym. J., 2012, 48: 252
[32] He M J, Chen W X, Dong X X.Polymer Physics (revised edition)[M]. Shanghai: Fudan University Press, 1990
[32] (何曼君, 陈维孝, 董西侠. 高分子物理(修订版)[M]. 上海: 复旦大学出版社, 1990)
[33] Yu A P, Ramesh P, Sun X B, et al.Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites[J]. Adv. Mater., 2008, 20: 4740
[34] Zheng Z X, Wang Z H, Feng Q L, et al.Preparation of surface-silvered graphene-CNTs/polyimide hybrid films: Processing, morphology and properties[J]. Mater. Chem. Phys., 2013, 138: 350
[35] Kashiwagi T, Grulke E, Hilding J, et al.Thermal degradation and flammability properties of poly(propylene)/carbon nanotube composites[J]. Macromol. Rapid Commun., 2002, 23: 761
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[5] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[6] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[7] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[8] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[9] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[10] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[11] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[12] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[13] 王伟, 彭怡晴, 丁士杰, 常文娟, 高原, 王快社. Ti-6Al-4V合金表面石墨基粘结固体润滑涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(6): 432-442.
[14] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[15] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.