Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (6): 415-421    DOI: 10.11901/1005.3093.2015.775
  本期目录 | 过刊浏览 |
He等离子体辅助的纳米钨结构材料的制备
郝志玲,范红玉(),郭佳玉,胡婷婷,李萌,崔荷敬,张碧璇
大连民族大学物理与材料工程学院 大连 116600
He Plasma Assisted Preparation of Nanostructure Tungsten Materials
Zhiling HAO,Hongyu FAN,Jiayu GUO(),Tingting HU,Meng LI,Hejing CUI,Bixuan ZHANG
School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600, China
引用本文:

郝志玲,范红玉,郭佳玉,胡婷婷,李萌,崔荷敬,张碧璇. He等离子体辅助的纳米钨结构材料的制备[J]. 材料研究学报, 2017, 31(6): 415-421.
Zhiling HAO, Hongyu FAN, Jiayu GUO, Tingting HU, Meng LI, Hejing CUI, Bixuan ZHANG. He Plasma Assisted Preparation of Nanostructure Tungsten Materials[J]. Chinese Journal of Materials Research, 2017, 31(6): 415-421.

全文: PDF(5489 KB)   HTML
摘要: 

利用He等离子体辅助的方法制备了纳米钨结构材料,采用扫描电子显微镜、轻敲模式原子力显微镜对不同辐照离子剂量和功率变化条件下处理的样品形貌、表面粗糙度等特征进行了分析。结果表明, 在放电功率为6 kW, 离子能量为220 eV条件下, 钨表面先出现纳米孔结构, 随着离子辐照剂量的增加, 纳米孔径逐渐增加, 辐照剂量为1.0×1026 ionsm-2时, 样品表面呈现密集的无序分布的纳米丝结构层,纳米结构层的厚度也随辐照剂量的增加而增加。高分辨扫描电子显微镜的测试结果表明纳米丝根部与钨基体界面处存在大量的纳米级He泡, 由此给出了纳米钨丝是由He泡演化而来的直接证据。

关键词 金属学纳米结构钨辐照氦泡    
Abstract

Nanostructure tungsten materials were successfully prepared by He plasma assisted methods. The effects of ions fluences and discharge power on the surface morphology of tungsten were investigated. Scanning electron microscopy and tapping mode atomic force microscopy were used to characterize the sample topography and surface roughness under different discharge condition. At the discharge power of 6 kW and ion energy of 220 eV, it showed that the tungsten surface formed the nano pinhole structure and then the pore size gradually increased with increasing ion fluences. When the ion fluence increased to 1.0×1026 ionsm-2, the sample surface formed nano tungsten fuzz. The cross section analysis also showed that the nano structure layer thickness increases with the increase of irradiation ion flunece. High-resolution scanning electron microscope analysis found that there are a large number of nanoHe bubble at the interface of tungsten fuzz root and tungsten bulk, which gives the direct evidence that the tungsten fuzz forming is derived from He bubble. This work is of great significance for the further understanding the formation mechanism of nano tungsten fuzz.

Key wordsmetallography    nano structured tungsten    irradiation    He bubble
收稿日期: 2016-10-31     
基金资助:国家自然科学基金(11405023),辽宁省教育厅一般科研项目(L2014539),辽宁省自然科学基金指导计划项目(201602189),辽宁省大学生创新创业训练项目(G201512026043),大连民族大学“太阳鸟”学生科研项目(tyn2016404)
图1  6 kW放电处理后钨的表面形貌分析
图2  6 kW放电处理后钨表面孔的尺寸分布图
图3  6 kW放电处理后钨的截面形貌分析
图4  钨样品的表面粗糙度(a)和纳米钨层高度(b)随离子辐照剂量的变化曲线
图5  放电功率对钨样品表面形貌的影响
图6  纳米钨丝结构的高分辨扫描电镜照片
图7  He 等离子体辐照后钨表面纳米层结构形成过程的示意图
[1] M. G. Walter, E. L.Warren, J. R.McKone, et al. Solar water splitting cells[J]. Chem.Rev, 2010, 110(11): 6446
[2] C. G.Morales-Guio, L. Stern, X. L. Hu. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution[J]. Chem. Soc.Rev, 2014, 43: 6555
[3] R. L. Chamousis, F. E. Osterloh.Use of potential determining ionsto control energetics and photochemical charge transfer of a nanoscale water splitting photocatalyst[J]. Energy Environ. Sci, 2014, 7: 736
[4] A. Fujishima, K. Honda.Electrochemical Photolysis ofWater at aSemiconductor Electrode[J]. Nature, 1972, 238: 7
[5] T. Bak, J. Nowotny, M. Rekas, C. C. Sorrell, Photo-electrochemicalhydrogen generation from water using solar energy[J]. Materials-related aspects, Int. J. Hydrogen.Energy, 2002, 27(10): 991
[6] A. Currao.Photoelectrochemical water splitting[J]. Chimia, 2007, 61: 815
[7] LI H J, CHEN G, LI Z H.Synthesis and photocatalytic decomposition of water under visible light irradiation of La2Ti2-xCoxO7 with pyrochlore structure[J] Acta Phys. - Chim. Sin., 2007, 23(5): 761
[7] (李鸿建, 陈刚, 李中华, 烧绿石结构La2Ti2-xCoxO7的制备及可见光分解水性能, 物理化学学报, 2007, 23(5): 761)
[8] F. E. Osterloh.Inorganic nanostructures for photoelectrochemicaland photocatalytic water splitting[J]. Chem. Soc. Rev, 2013, 42: 2294
[9] J. Son, J. Wang, F. E.O sterloh, et al. Casey, A tellurium-substituted Lindqvist- type polyoxoniobate showing high H2 evolutioncatalyzed by tellurium nanowires via photodecomposition[J]. Chem.Commun, 2014, 50: 836
[10] Z. Jiao, J. Wang, L. Ke, et al.Morphology-Tailored synthesis of tungsten trioxide (hydrate) thin films and theirphotocatalytic properties[J]. Appl. Mater. Interfaces, 2011, 3: 229
[11] C. Janáky, K. Rajeshwar, N. R. de Tacconi, et al. Tungsten- based oxidesemiconductors for solar hydrogengeneration[J]. Catal. Today, 2013, 199: 53
[12] R. Solarska, K. Bienkowski, S. Zoladek, et al.Enhanced water splitting at thin filmtungsten trioxide photoanodes bearing plasmonic gold- polyoxometalate particles[J]. Angew. Chem. Int. Ed, 2014, 53: 14196
[13] B. A. Aragaw, C. Pan, W. Su, et al.Facileone- pot controlled synthesis of Sn and C codoped single crystal TiO2 nanowire arrays for highly efficient photoelectrochemical water splitting[J]. Appl. Catal. B, 2015, 163: 78
[14] X. Liu, F. Y. Wang, Q. Wang.Nanostructure- based WO3 photoanodes for photoelectrochemical water splittin[J]. Phys. Chem.Chem. Phys, 2012, 14: 794
[15] V. Cristino, S. Caramori, R. Argazzi, et al.Efficient Photoelectrochemical Water Splitting by Anodically Grown WO3 Electrodes[J]. Langmuir, 2011, 27(11): 7276
[16] C. Santato, M. Odziemkowski, M. Ulmann, et al.Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications[J]. J. Am. Chem. Soc, 2001, 123(43): 10639
[17] C. Santato, M. Ulmann, J. Augustynski.Enhanced visible light conversion efficiency using nanocrystalline WO3 films[J]. Adv. Mater, 2001, 13(7): 511
[18] B. Yang, Y. Zhang, E. Drabarek, et al.Enhanced photoelectrochemical activity of sol- gel tungsten trioxidefilms through textural control[J]. Chem. Mater, 2007, 19(23): 5664
[19] B. Marsen, E. L. Miller, D. Paluselli, et al.Progress insputtered tungsten trioxide for photoelectrode applications[J]. Int. J. Hydrogen Energy, 2007, 32(15): 3110
[20] H. Zheng, A. Z. Sadek, K. Latham, et al.Nanoporous WO3 from anodized RF sputtered tungsten thin films[J]. Electrochem. Commun, 2009, 11(4): 768
[21] X. Zhang, X. Lu, Y. Shen, et al.Threedimensional WO3 nanostructures on carbon paper: photoelectrochemical property and visible light driven photocatalysis[J]. Chem.Commun, 2011, 47: 5804
[22] V.Chakrapani, J. Thangala, M. K. Sunkara.WO3 and W2N nanowirearrays for photoelectrochemical hydrogen production[J]. Int. J. Hydrogen. Energy, 2009, 34(22): 9050
[23] Q. Yang, Y. You, L. Liu, et al.Nanostructured fuzz growth ontungsten underlow-energy andhigh-flux He irradiation[J]. Scientific Reports, 2015, 5, 10959
[24] Q. Yang, H. Fan, W. Ni, et al.Observation of interstitial loops in He + irradiated W byconductive atomicforce microscopy[J]. Acta Material, 2015, 92: 178
[25] D. Nishijima, M. Y. Ye, N. Ohno, et al. Incident ion energydependence of bubble formation on tungsten surface with low energy and high flux helium plasma irradiation [J]. J. Nucl. Mater, 2003, 313-316: 97
[26] A. Debelle, M. F. Barthe, T. Sauvage, et al.Helium behaviour and vacancy defect distribution in helium implanted tungsten[J]. J. Nucl. Mater, 2007, 362: 181
[27] Y. Watanabe, H. Iwakiri, N. Yoshida, et al.Formation of interstitial loops in tungsten under helium ion irradiation: Rate theory modeling and experiment[J]. Nucl. Instrum. Methods Phys. Res. B, 2007, 255: 32
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[3] 王伟, 彭怡晴, 丁士杰, 常文娟, 高原, 王快社. Ti-6Al-4V合金表面石墨基粘结固体润滑涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(6): 432-442.
[4] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[5] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[6] 刘丹, 雷玉成, 张伟伟, 李天庆, 姚奕强, 丁祥彬. He+ 辐照对CLAM钢焊缝微观组织和性能的影响[J]. 材料研究学报, 2022, 36(8): 609-616.
[7] 胡瑞航, 杨贞, 雷齐俊, 李昕洋, 董子宇, 张晓彤, 范红玉, 牛金海. 氦离子辐照对钨纳米丝稳定性的影响[J]. 材料研究学报, 2022, 36(11): 850-854.
[8] 玄京凡, 范红玉, 白樱, 胡瑞航, 李昕洋, 陶文辰, 倪维元, 牛金海. 低能大流强氢离子辐照对钨的刻蚀行为[J]. 材料研究学报, 2020, 34(9): 659-664.
[9] 施渊吉,于林惠,于照鹏,成功,吴晓春,滕宏春. 热作模具钢DM的高温稳定性和热疲劳性能[J]. 材料研究学报, 2020, 34(2): 125-136.
[10] 涂坚,刘雷,丁石润,李建波,周志明,董安平,黄灿. 预变形程度和变形温度对CoCrFeMnNi高熵合金的变形机制及后续再结晶行为的影响[J]. 材料研究学报, 2019, 33(6): 427-434.
[11] 吴良,范红玉,倪维元,许洋,鲍森,张雨薇,周思倩,牛金海. 氦离子辐照下钨纳米丝的自保护行为[J]. 材料研究学报, 2019, 33(11): 809-814.
[12] 付振宇,王泽群,刘平平,魏印平,万发荣,詹倩. 氘和氦离子辐照下CLAM钢的辐照硬化与微结构演变*[J]. 材料研究学报, 2016, 30(9): 641-648.
[13] 杨铭, 范红玉, 解晓东, 郭一鸣, 刘云鹤, 李坤. 高能W6+预辐照对钨表面微结构的影响[J]. 材料研究学报, 2016, 30(4): 277-284.
[14] 李瑞琦;李春东;何世禹;杨德庄. Kapton/Al薄膜的电子辐照损伤[J]. 材料研究学报, 2007, 21(6): 577-580.
[15] 张丽新; 王承民; 何世禹 . 在空间质子辐照下甲基硅橡胶的破坏模型[J]. 材料研究学报, 2005, 19(2): 126-130.