Please wait a minute...
Chin J Mater Res  2010, Vol. 24 Issue (1): 33-36    DOI:
论文 Current Issue | Archive | Adv Search |
Orientation Environment for Goss Grain Growth in Grain Oriented Electrical Steels
LI Yang;  MAO Weimin
Department of Materials; State Key Laboratory for Advanced Metals and Materials; University of Science and Technology Beijing; Beijing 100083
Cite this article: 

LI Yang MAO Weimin. Orientation Environment for Goss Grain Growth in Grain Oriented Electrical Steels. Chin J Mater Res, 2010, 24(1): 33-36.

Download:  PDF(722KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Macro-texture of decarburized specimens of conventional grain oriented electrical steels with MnS particles as inhibitors was determined by XRD technology. The microscopic texture and misorientation distribution between Goss grains and the other surrounding grains were analyzed after the decarburized specimens were heated up to 925 . The misorientation environment for different oriented grains of primary texture in the decarburized specimen was calculated based on the misorientation principles. Both experimental observations and theoretical calculations indicated the high angle characteristics of the misorientation between Goss grains and the surrounding grains, especially in the angle range of 30o to 45o. However, low angle misorientation was more emphasized arround non-Goss grains. Goss grains are still mainly surrounded by high angle gain boundaries after secondary recrystallization.

Key words:  metallic material        grain oriented electrical steel       misorientation distribution       Goss grain     
Received:  29 July 2009     
Fund: 

Supported by National Natural Science Foundation of China No.50871015.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2010/V24/I1/33

1 P.Lin, G.Palumbo, J.Harase, K.T.Aust, Coincidence site lattice (CSL) grain boundaries and Goss texture development Fe-3% Si alloy, Acta Mater., 44(12), 4677(1996) 2 Y.Yoshitomi, K.Iwayama, T.Nagashima, J.Harase, N.Takahashi, Coincidence grain boundary and role of inhibitor for secondary recrystallization in Fe-3% Si alloy, Acta Metal. Mater., 41(5), 1577(1994) 3 P.Gangli, J.A.Szpunar, The role of 5 coincidence boundaries in the growth selection of Fe-3%Si, Journal of Materials Processing Technology, 47(1-2), 167(1994) 4 MAO Weimin, Structure Principles of Crystalline Materials (Beijing, Metallurgical Industry Press, 2007) p.161 (毛卫民,  材料的晶体结构原理  (北京, 冶金工业出版社, 2007) p.161) 5 Y.Hayakawa, J.A.Szpunar, A new model of Goss texture development during secondary recrystallization of electrical steel, Acta Mater., 45(11), 4713(1997) 6 Y.Hayakawa, J.A.Szpunar, The role of grain boundary character distribution in secondary recrystallization of electrical steels, Acta Mater., 45(3), 1285(1997) 7 N.Rajmohan, J.A.Szpunar, An analytical method for characterizing grain boundaries around growing Goss grains during secondary recrystallization, Scripta Mater., 44(10), 2387(2001) 8 W.P.Sun, M.Militzer, J.J.Jonas, Stran-induced nucleation of MnS in electrical steels, Metall. Trans. A, 23(3), 821(1992) 9 T.Takamiya, M.Kurosawa, M.Komatsubara, Effect of hydrogen content in the final annealing atmosphere on secondary recrystallization of grain-oriented Si steel, Journal of Magnetism and Magnetic Materials, 254-255, 334(2003) 10 MAOWeimin, Crystal Texture and Anisotropy of Metallic Materials (Beijing, Science Press, 2002) p.118 (毛卫民,  金属材料的晶体学织构与各向异性  (北京, 科学出版社, 2002) p.118) 11 J.Park, J.A.Szpunar, Evolution of recrystallization texture in nonoriented electrical steels, Acta Mater., 51(11), 3037(2003) 12 D.Dorner, S.Zaefferer, D.Raabe, Retention of the Goss orientation between microbands during cold rolling of an Fe-3%Si single crystal, Acta Mater., 55(7), 2519(2007)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] LIU Tianfu, ZHANG Bin, ZHANG Junfeng, XU Qiang, SONG Zhuman, ZHANG Guangping. Effect of Notch Stress Concentration Factors on Low-cycle Fatigue Performance of TC4 ELI Alloy[J]. 材料研究学报, 2023, 37(7): 511-522.
No Suggested Reading articles found!