Please wait a minute...
Chin J Mater Res  2009, Vol. 23 Issue (4): 437-443    DOI:
论文 Current Issue | Archive | Adv Search |
Effect of liquid metal cooling on microstructures of directionally solidified NiAl–Cr(Mo)–Hf(Ho) alloy
Xiao Xuan1;   Guo Jianting2;   Liu Yang 1;  Zhao Haitao1
1.Shenyang University of Science and Technology; Shenyang 110168
2.Institute of Metal Research; CAS; Shenyang 110016
Cite this article: 

Xiao Xuan Guo Jianting Liu Yang Zhao Haitao. Effect of liquid metal cooling on microstructures of directionally solidified NiAl–Cr(Mo)–Hf(Ho) alloy. Chin J Mater Res, 2009, 23(4): 437-443.

Download:  PDF(1189KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The alloy with nominal composition Ni–33Al–31Cr–2.9Mo–0.1Hf–0.05Ho (%) has been directionally solidified by liquid metal cooling (LMC) and conventional high rate solidification (HRS) processes. Investigations reveal that the directionally solidified alloys are composed of primary dendritic NiAl, NiAl/Cr(Mo) eutectic cell and Hf solid solution. Compared with the conventional high rate solidification process, the liquid metal cooling process can provide higher thermal gradient and higher cooling rate. Higher thermal gradient widens the composition range of coupled zone and reduces the volume fraction of primary dendritic NiAl. Higher cooling rate restrains the diffusion and results in the refinement of the microstructure and the expansion of total contents of the solid solution elements (except Si) in NiAl and Cr(Mo) phases. In addition, casting defects including freckles, misoriented primary dendritic NiAl grains and discontinuities of primary dendritic NiAl grains decrease or even disappear completely in the directionally solidified alloys processed by liquid metal cooling process.

Key words:  metallic materials      intermetallics      NiAl alloy      directional solidification      liquid metal cooling technique      microstructure     
Received:  10 April 2009     
ZTFLH: 

TG113

 

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2009/V23/I4/437

1 H.E.Cline, J.L.Walter, E.Lifshin, R.R.Russell, Structures, faults and the rode–plate transiton in eutectics, Metall. Trans., 2, 189(1971)
2 H.E.Cline, J.L.Walter, The effect of alloy additions on the rod–plate transition in the eutectic NiAl–Cr, Metall. Trans., 1, 2907(1970)
3 H.E.Cline, J.L.Walter, E.F.Koch, L.M.Osika, The variation of interface dislocation networks with lattice mismatch in eutectic alloy, Acta Metall., 19, 405(1971)
4 D.R.Johnson, X.F.Chen, B.F.Oliver, R.D.Noebe, J.D.Whittenberger, Processing and mechanical properties of in–situ composites from the NiAl–Cr and the NiAl–(Cr, Mo) eutectic systems, Intermetallics, 3, 99(1995)
5 X.F.Chen, D.R.Johnson, R.D.Noebe, B.F.Oliver, Deformation and fracture of a directionally solidified NiAl– 28Cr–6Mo eutectic alloy, J. Mater. Res., 10, 1159(1995)
6 J.M.Yang, S.M.Jeng, K.Bain, R.A.Amato, Microstructure and mechanical behavior of in–situ directional dolidified NiAl–Cr(Mo) eutectic composite, Acta Mater., 45, 295(1997)
7 S.V.Raj, I.E.Locci, Microstructural characterization of a directionally–solidified Ni–33(at.%) Al–31Cr–3Mo eutectic alloy as a function of withdrawal rate, Intermetallics, 9(3), 217(2001)
8 J.D.Whittenberger, S.V.Raj, I.E.Locci, J.A.Salem, Effect of growth rate on elevated temperature plastic flow and room temperature fracture toughness of directionally solidified NiAl–31Cr–3Mo, Intermetallics, 7(10),1159(1999)
9 A.J.Elliott, S.Tin, W.T.King, S.C.Huang, M.F.X.Gigliotti, T.M.Pollock, Directional solidification of large superalloy castings with radiation and liquid–metal cooling: a comparative assessment, Metall. Mater. Trans., 35A, 3221(2004)
10 CUI Chuanyong, GUO Jianting, QI Yihui, YE Hengqiang, Deformation behavior and microstructure of DS NiAl/Cr(Mo)alloy containing Hf, Intermetallics, 10(10), 1001(2002)
11 J.D.Whittenberger, S.V.Raj, I.E.Locci, J.A.Salem, in Structural Intermetallics, Effects of minor alloying additions on the microstructure, toughness and creep strength of directionally solidified NiAl–31Cr–3Mo, edited by K.J.Hemker, D.M.Dimiduk, H.Clemens, R.Darolia, H.Inui, J.M.Larsen, V.K.Sikka, M.Thomas, J.D.Whittenberger(Warrendale, PA, TMS, 2001) p.775
12 A.Misra, A.Gibala, R.d.Noebe, Optimization of toughness and strength in multiphase intermetallics, Intermetallics, 9(10–11), 971(2001)
13 HU Hanqi, Metal Solidification Principle, (Beijing, China Machine Press, 2000) p.168
(胡汉起,  金属凝固原理  (北京, 机械工业出版社, 2000) p.168)
14 A.Karma, A.Sarkissan, Morphological instabilities of lamellar eutectics, Metall. Mater. Trans., 27A, 635(1996)
15 S.Milenkovic, R.Caram, Effect of the growth parameters on the Ni–Ni3Si eutectic microstructure, J. Crystal Growth, 237–239, 95(2002)
16 M.H.Burden, K.A.Hunt, The extent of the eutectic range, J. Crystal Growth, 22(4), 328(1974)
17 S.M.Copley, A.F.Giamei, S.M.Johnson, M.F.Hornbecker, The origin of freckles in unidirectionally solidified castings, Metall. Trans., 1, 2193(1970)
18 T.M.Pollock, W.H.Murphy, The breakdown of single– crystal solidification in high refractory nickel–base alloys, Metall. Trans., 27A, 1081(1996)
19 A.J.Elliott, G.B.Karney, M.F.X.Gigliotti, T.M.Pollock, in Superalloys 2004, Issues in processing by the Liquid–Sn assisted directional solidification techique, edited by K.A. Green, T.M.Pollock, H.Harada, TE. Howson, R.C.Reed, J.J.Schirra, S.Walston(Warrendale, PA, TMS, 2004) p.421

[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!