Please wait a minute...
Chin J Mater Res  2009, Vol. 23 Issue (4): 337-342    DOI:
论文 Current Issue | Archive | Adv Search |
Molecular dynamics simulation of  β--SiC nanowire under uniaxial tension
HAN Tongwei 1;2;   HE Pengfei 1;   WANG Jian 2;  ZHENG Bailin 1
1.School of Aerospace Engineering and Applied Mechanics; Tongji University; Shanghai 200092; China
2.The Queen's University of Belfast Belfast UK BT9 5AH
Cite this article: 

HAN Tongwei HE Pengfei WANG Jian ZHENG Bailin. Molecular dynamics simulation of  β--SiC nanowire under uniaxial tension. Chin J Mater Res, 2009, 23(4): 337-342.

Download:  PDF(1351KB) 
Export:  BibTeX | EndNote (RIS)      

The tension mechanical properties of the [001]  β--SiC nanowires with different cross--sections were investigated using molecular dynamics simulation with Tersoff bond--order interatomic potential. The stress--strain curves were obtained and analyzed in order to elucidate the scale effect on the mechanical properties of the nanowires. The simulation results show that the  β--SiC nanowires exhibit large plastic deformation for at least 11% under axial strain at room temperature, which is rarely observed for their macro counterparts
especially at low temperature. It is also found that the influence of the cross section size of the nanowires on the mechanical properties is remarkable; with increasing of the size the tensile strength and Young's modulus of the nanowires increase.

Key words:  foundational discipline in materials science      tension mechanical properties      molecular dynamics      β--SiC      scale effects      nanowire     
Received:  18 December 2008     




Supported by National Natural Science Foundation of China No.10472084.

URL:     OR

1 ZHANG Lide, MOU Jimei, NanoMaterial and Nanostructure (Beijing, Science Press, 2002) p.27
(张立德, 牟季美,   纳米米材料和纳米结构  (北京, 科学出版社, 2002) p.27)
2 ZHUJing, NanoMaterial and NanoDevice, (Beijing, Tsinghua Publishing Company, 2003) p.4
(朱 静,  纳米材料和器件,  第一版, (北京, 清华大学出版社, 2003) p.4)
3 M.P.Allen, D.J.Tildesley, Computer Simulation of Liquids (Oxford, Clarendon Press, 1991) p.71–82
4 XU Zhou, WANG Xiuxi, LIANG Haiyi, Molecular dynamics simulation of the strain rate effect and size effect for Cu nanowire, Chinese Journal of Materials Research, 17(3), 262(2003)
(徐洲, 王秀喜, 梁海弋, 铜纳米丝的应变率和尺寸效应的分子动力学模拟, 材料研究学报,  17(3), 262(2003))
5 Jakob Schiøtz, Karsten W. Jacobsen, A Maximum in the Strength of Nanocrystalline, Science, 301(5), 1357(2003)
6 D.L.Chen, T.C.Chen, Mechanical properties of Au nanowires under uniaxial tension with high strain–rate by molecular dynamics, Nanotechnology, 16(12), 2972(2005)
7 R.Komanduria, N.Chandrasekarana, L.M.Raff, Molecular dynamics (MD) simulation of uniaxial tension of some single–crystal cubic metals at nanolevel, International Journal of Mechanical Sciences, 43(10), 2237(2001)
8 S.J.A.Koh, H.P.Lee, C.Lu, Q.H.Cheng, Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: Temperature and strain–rate effects, Physical Review B, 72(8), 2237(2005)
9 S.J.A.Koh, H.P.Lee, Molecular dynamics simulation of size and strain rate dependent mechanical response of FCC metallic nanowires, Nanotechnology, 17(14), 3451(2007)
10 H.A.WU, Molecular dynamics study on mechanics of metal nanowire, Mechanics Research Communications, 33(1), 9(2006)
11 Y.H.Wen, Z.H.Zhua, G.F.Shao, R.Z.Zhu, The uniaxial tensile deformation of Ni nanowire: atomic–scale computer simulations, Physica E, 27(1–2), 113(2005)
12 D.Wolf, V.Yamakov, S.R.Phillpot, A.Mukherjee, H.Gleiter, Deformation of nanocrystalline materials by molecular–dynamics simulation: relationship to experiments Acta Materialia, 53(1), 1(2005)
13 D.X.Wang, J.W.Zhao, S.HU, X.Pin, S.Liang, Y.H.Liu, S.Y.Deng, Where, and How, Does a Nanowire Break? Nano Letters, 7(5), 1208(2007)
14 Lin YUAN, Debin SHAN, Bin GUO, Molecular dynamics simulation of tensile deformation of nano–single crystal aluminum,Journal of Materials Processing Technology, 184(1–3), 1(2007)
15 J.B.Casady, R.W.Johnson, Status of silicon carbide (SiC) as a wide–bandgap semiconductor for high–temperature application: A review, Solid–State Electron, 39(10), 1409(1996)
16 Daisuke Nakamura, Itaru Gunjishima, Satoshi Yamaguchi, Tadashi Ito, Atsuto Okamoto, Hiroyuki Kondo, Shoichi Onda, Kazumasa Takatori, Ultrahigh–quality silicon carbide single crystals, Nature, 430(7003), 1009(2004)
17 M.Schaible, Empirical Molecular Dynamics Modeling of Silicon and Silicon Dioxide: A Review, Critical Reviews in Solid State and Materials Science, 24(4), 265(1999)
18 H.Kikuchi, R.K.Kalia, A.Nakano, P.Vashishta, P.S.Branicio, Brittle dynamic Fracture of Crystalline Cubic Silicon Carbide (3C–SiC) via Molecular Dynamics Simulation, Journal of Applied Physics, 98(10), 103524(1–4)(2005)
19 K.Mizushima, M.J.Tang, S.Yip, Toward multiscale modelling: the role of atomistic simulations in the analysis
of Si and SiC under hydrostatic compression, Journal of Alloys and Compounds, 279(1), 70(1998)
20 L.J.Porter, J.Li, S.Yip, Atomistic modeling of finite–temperature properties of β–SiC. I. Lattice vibrations,
heat capacity, and thermal expansion, Journal of Nuclear Materials, 246(1), 53(1997)
21 F.Gao, W.J.Weber, M.Posselt, V.Belko, Atomistic study of intrinsic defect migration in 3C–SiC, Physical Review B, 69(24), 245205(2004)
22 J.Tersoff, Modeling solid–state chemistry: Interatomic potentials for multicomponent systems, Physical Review B, 39(8), 5566(1989)

[1] YANG Dongtian, XIONG Liangyin, LIAO Hongbin, LIU Shi. Improved Design of CLF-1 Steel Based on Thermodynamic Simulation[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[4] DUAN Guangyu, HU Jingwen, HU Zuming, YU Xiang, CHI Changlong, LI Yue. Influence of BaTiO3 Nanowire Aspect Ratio on Dielectric Property of Poly (Metaphenylene Isophthalamide) Composite[J]. 材料研究学报, 2022, 36(7): 527-535.
[5] SUN Yi, HAN Tongwei, CAO Shumin, LUO Mengyu. Tensile Properties of Fluorinated Penta-Graphene[J]. 材料研究学报, 2022, 36(2): 147-151.
[6] SUN Liying, QIAN Jianhua, ZHAO Yongfang. Preparation and Performance of AgNWs -TPU/PVDF Flexible Film Capacitance Sensors[J]. 材料研究学报, 2021, 35(6): 441-448.
[7] SHI Yuanji, CHEN Xianbing, WU Xiujuan, WANG Hongjun, GUO Xunzhong, LI Junwan. Deformation Mechanism of Nanoscale Polycrystalline α-Silicon Carbide Based on Molecular Dynamics Simulation[J]. 材料研究学报, 2020, 34(8): 628-634.
[8] LU Xiaoqing,ZHANG Quande,WEI Shuxian. Theoretical Study on Photoelectric Characteristic of A-π-D-π-A Indole-based Dye Sensitizers[J]. 材料研究学报, 2020, 34(1): 50-56.
[9] Xuexiong LI,Dongsheng XU,Rui YANG. CPFEM Study of High Temperature Tensile Behavior of Duplex Titanium Alloy[J]. 材料研究学报, 2019, 33(4): 241-253.
[10] Li HUANG. Stability and Heat storage Capacity of Phase Change Emulsion Paraffin/Water[J]. 材料研究学报, 2017, 31(10): 789-795.
[11] CHAI Weihong, WANG Yan'en, WEI Qinghua, YANG Mingming, LI Xinpei, WEI Shengmin. Molecular Dynamics Study on Bonding Mechanism of 3D Printing of Bone Scaffolds[J]. 材料研究学报, 2016, 30(8): 568-574.
[12] Xinlong ZHOU,Zuliang LIU,Xiaoming WANG,Yu ZHENG,Qunrong SHI. Thermal Decomposition Behaviour of ANPyO at High Temperature by Molecular Dynamics Simulation[J]. 材料研究学报, 2016, 30(12): 940-946.
[13] Liang ZHU,Jing WANG,Xiaohui LI,Hongbo SUO,Yiliang ZHANG. R-S-N Mathematical Model Based on TC18 by BW High Cycle Fatigue Test Data[J]. 材料研究学报, 2015, 29(9): 714-720.
[14] Yang CHEN,Cheng QIAN,Zhitang SONG,Guoquan MIN. Measurement of Compressive Young’s Modulus of Polymer Particles Using Atomic Force Microscopy[J]. 材料研究学报, 2014, 28(7): 509-514.
[15] Guiqin YU,Jianjun LIU,Yongmin LIANG. Synthesis and Tribological Performance of Guanidinium Ionic Liquids as Lubricants for Steel /Steel Contacts[J]. 材料研究学报, 2014, 28(6): 448-454.
No Suggested Reading articles found!