Please wait a minute...
Chin J Mater Res  2009, Vol. 23 Issue (3): 317-322    DOI:
论文 Current Issue | Archive | Adv Search |
Simulation of dendrite growth of Fe–C alloy using phase field method
ZHANG Yutuo;  LI Donghui ; WANG Chengzhi ; LI Yiyi
1.School of Materials Science and Engineering; Shenyang Ligong University; Shenyang 110168
2.Institute of Metal Research CAS; Shenyang 110016
Cite this article: 

ZHANG Yutuo LI Donghui WANG Chengzhi LI Yiyi. Simulation of dendrite growth of Fe–C alloy using phase field method. Chin J Mater Res, 2009, 23(3): 317-322.

Download:  PDF(811KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The evolution of a single dendrite growth and the morphology of multi–dendrite during isothermal solidification of Fe–0.5%C alloy are simulated using phase field method. The effects of supercooling, anisotropy of crystal, interface thickness and crystal orientation as well as the noise on the dendritic morphology are studied. The results illustrate that the morphology of the dendrite is composed of the primary and secondary arms. The process of the dendrite growth and the competition between the dendrite arms are reproduced during solidification. The solute enrichment and the dendrite segregation occur during solidification. The primary arms have the lowest concentration, but the regions between the arms have the highest concentration because of the build–up of solute. With the increment of supercooling, the dendrite grows quickly and the branches are developed. The interface thickness impacts the growth velocity of dendrite. The anisotropy of the crystal exerts an influence on the dendritic morphology. The dendrite grows preferentially when the crystal orientation is consistent with the coordinate axis. The noise leads to the development of the dendritic branches.

Key words:  foundational discipline in materials science      dendritic growth      phase field method      Fe–C alloy      supercooling     
Received:  26 August 2008     
ZTFLH: 

TG111

 
Fund: 

Supported by the Shenyang Nurturing Young Scientific and Technological Talents Item No.1081230--1--00.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2009/V23/I3/317

1 W.Kurz,D.J.Fisher, Fundamentals of Solidification, 4th edition (Switzerland, Trans Tech Publications Ltd, 1998) p.4
2 R.Sasikumar, E.Jacob, Simulation of side branch development in thermal dendritic grains, Materials Science Form, 215–216, 191(1996)
3 Pil–Ryung Cha, Dong–Hee Yeon, Jong–Kyu Yoon, Phase– field model for multicomponent alloy solidification, Journal of Crystal Growth, 274, 281(2005)
4 D.M.Anderson, G.B.McFadden, A.A.Wheeler, A phase–field model of solidification with convection, Physica D: Nonlinear Phenomena, 135, 175(2000)
5 Hiroki Kobayashi, Machiko Ode, Seong Gyoon Kim, Won Tae Kim, Toshio Suzuki, Phase–field model for solidification of ternary alloys coupled with thermodynamic database, Scripta Materialia, 48, 689(2003)
6 FENG Li, WANG Zhiping, LU Yang, ZHU Changsheng, Phase–field model of isothermal with multiple solidification of binary alloy grains, Acta Physica Sinica, 57, 1084(2008)
(冯力, 王智平, 路阳, 朱昌盛, 二元合金多晶粒的枝晶生长的等温相场模型, 物理学报,   57, 1084(2008))
7 LONGWenyuan, CAI Qizhou, WEI Bokang, CHEN Wenliang, Simulation of dendritic growth of multicomponent alloys using phase–field method, Acta Physica Sinica, 55, 1341(2006)
(龙文元, 蔡启舟, 魏伯康, 陈文亮, 相场法模拟多元合金过冷熔体中的枝晶生长, 物理学报,  55, 1341(2006))
8 NIU Yane, YANWen, FENG Xiaoming, CHEN Jian, FAN Xinhui, Phase–field simulation of dendrite morphologies of Fe–C alloy in isothermal solidification, Hot Working Technology, 37, 4(2008)
(牛艳娥, 严文, 冯小明, 陈建, 范新会, Fe--C合金等温凝固过程枝晶形貌的相场法模拟, 热加工工艺,  37, 4(2008))
9 NIU Yane, YAN Wen, FENG Xiaoming, CHEN Jian, FAN Xinhui, Phase–field simulation of Fe–C Alloy in the isothermal solidification, Foundry Technology, 29, 244(2008)
(牛艳娥, 严文, 冯小明, 陈建, 范新会, Fe--C合金等温凝固过程的相场法模拟, 铸造技术,   29, 244(2008))
10 Toshio Suzuki, Machiko Ode, Seong Gyoon Kim, Won Tae Kim, Phase–field model of dendritic growth, Journal of Crystal Growth, 237–239, 125(2002)
11 Seong Gyoon Kim, Won Tae Kim, Toshio Suzuki, Phase– field model for binary alloys, Physical Review E, 60(6), 7186 (1999)

[1] YANG Dongtian, XIONG Liangyin, LIAO Hongbin, LIU Shi. Improved Design of CLF-1 Steel Based on Thermodynamic Simulation[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[4] SUN Yi, HAN Tongwei, CAO Shumin, LUO Mengyu. Tensile Properties of Fluorinated Penta-Graphene[J]. 材料研究学报, 2022, 36(2): 147-151.
[5] LU Xiaoqing,ZHANG Quande,WEI Shuxian. Theoretical Study on Photoelectric Characteristic of A-π-D-π-A Indole-based Dye Sensitizers[J]. 材料研究学报, 2020, 34(1): 50-56.
[6] Xuexiong LI,Dongsheng XU,Rui YANG. CPFEM Study of High Temperature Tensile Behavior of Duplex Titanium Alloy[J]. 材料研究学报, 2019, 33(4): 241-253.
[7] Li HUANG. Stability and Heat storage Capacity of Phase Change Emulsion Paraffin/Water[J]. 材料研究学报, 2017, 31(10): 789-795.
[8] Liang ZHU,Jing WANG,Xiaohui LI,Hongbo SUO,Yiliang ZHANG. R-S-N Mathematical Model Based on TC18 by BW High Cycle Fatigue Test Data[J]. 材料研究学报, 2015, 29(9): 714-720.
[9] Yang CHEN,Cheng QIAN,Zhitang SONG,Guoquan MIN. Measurement of Compressive Young’s Modulus of Polymer Particles Using Atomic Force Microscopy[J]. 材料研究学报, 2014, 28(7): 509-514.
[10] Guiqin YU,Jianjun LIU,Yongmin LIANG. Synthesis and Tribological Performance of Guanidinium Ionic Liquids as Lubricants for Steel /Steel Contacts[J]. 材料研究学报, 2014, 28(6): 448-454.
[11] Xiaogang WANG,Yueyi LI,Hailan WANG,Cunlong ZHOU,Qinxue HUANG. Numerical Modeling for Roller Leveling Process of Bimetal-Plate[J]. 材料研究学报, 2014, 28(4): 308-313.
[12] Wu YAO,Mengxue WU,Yongqi WEI. Determination of Reaction Degree of Silica Fume and Fly Ash in a Cement - silica fume - fly ash Ternary Cementitious System[J]. 材料研究学报, 2014, 28(3): 197-203.
[13] Ruwu WANG,Jing LIU,Zhanghua GAN,Chun ZENG,Fengquan ZHANG. Crystallization Kinetics of Amorphous Alloys Fe73.5Si13.5-xGexB9Cu1Nb3(x=3, 6)[J]. 材料研究学报, 2014, 28(3): 204-210.
[14] Lei LI,Ke QIN,Haitao ZHANG,Zhihao ZHAO,Qingfeng ZHU,Yubo ZUO,Jianzhong CUI. Crystallographic Features of a Solidified Hypoeutectic Zn-4.45%Al Alloy[J]. 材料研究学报, 2014, 28(2): 126-132.
[15] Yanen WANG,Qinghua WEI,Mingming YANG,Shengmin WEI. Molecular Dynamics Simulation of Mechanical Properties and Surface Interaction for HA/NBCA[J]. 材料研究学报, 2014, 28(2): 133-138.
No Suggested Reading articles found!